scispace - formally typeset
Search or ask a question
Journal Article

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

TL;DR: This article introduced a unified framework that converts all text-based language problems into a text-to-text format and compared pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks.
Abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new ``Colossal Clean Crawled Corpus'', we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: This article explore the ability of sequence to sequence models to perform cross-domain reasoning and present a prompt-template-filling approach to enable sequence-to-sequence models to do crossdomain reasoning.
Abstract: In this paper, we explore the ability of sequence to sequence models to perform cross-domain reasoning. Towards this, we present a prompt-template-filling approach to enable sequence to sequence models to perform cross-domain reasoning. We also present a case-study with commonsense and health and well-being domains, where we study how prompt-template-filling enables pretrained sequence to sequence models across domains. Our experiments across several pretrained encoder-decoder models show that cross-domain reasoning is challenging for current models. We also show an in-depth error analysis and avenues for future research for reasoning across domains
Proceedings Article
13 Sep 2021
TL;DR: Zhang et al. as discussed by the authors proposed an approach, named ARSJoint, that jointly learns the modules for the three tasks with a machine reading comprehension framework by including claim information.
Abstract: Scientific claim verification can help the researchers to easily find the target scientific papers with the sentence evidence from a large corpus for the given claim. Some existing works propose pipeline models on the three tasks of abstract retrieval, rationale selection and stance prediction. Such works have the problems of error propagation among the modules in the pipeline and lack of sharing valuable information among modules. We thus propose an approach, named as ARSJoint, that jointly learns the modules for the three tasks with a machine reading comprehension framework by including claim information. In addition, we enhance the information exchanges and constraints among tasks by proposing a regularization term between the sentence attention scores of abstract retrieval and the estimated outputs of rational selection. The experimental results on the benchmark dataset SciFact show that our approach outperforms the existing works.
Posted Content
TL;DR: In this article, the authors presented a dataset of 31,366 diverse documents for 520 entities and analyzed the correlation of document coverage with features like length, entity mention frequency, Alexa rank, language complexity and information retrieval scores.
Abstract: This paper presents a new task of predicting the coverage of a text document for relation extraction (RE): does the document contain many relational tuples for a given entity? Coverage predictions are useful in selecting the best documents for knowledge base construction with large input corpora. To study this problem, we present a dataset of 31,366 diverse documents for 520 entities. We analyze the correlation of document coverage with features like length, entity mention frequency, Alexa rank, language complexity and information retrieval scores. Each of these features has only moderate predictive power. We employ methods combining features with statistical models like TF-IDF and language models like BERT. The model combining features and BERT, HERB, achieves an F1 score of up to 46%. We demonstrate the utility of coverage predictions on two use cases: KB construction and claim refutation.
Proceedings Article
01 Nov 2021
TL;DR: IndoNLG as mentioned in this paper is the first NLG benchmark for low-resource languages in Indonesian, Javanese, and Sundanese, which includes summarization, question answering, chit-chat, and three different pairs of machine translation tasks.
Abstract: Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource—yet widely spoken—languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks—despite using only one-fifth the parameters of a larger multilingual model, mBART-large (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, localized languages to achieve more efficient learning and faster inference at very low-resource languages like Javanese and Sundanese.
Posted Content
TL;DR: The authors use a denoising autoencoder to predict new events which fit into an existing temporally-ordered sequence, which can capture both temporality and common event co-occurrence.
Abstract: Models of narrative schema knowledge have proven useful for a range of event-related tasks, but they typically do not capture the temporal relationships between events. We propose a single model that addresses both temporal ordering, sorting given events into the order they occurred, and event infilling, predicting new events which fit into an existing temporally-ordered sequence. We use a BART-based conditional generation model that can capture both temporality and common event co-occurrence, meaning it can be flexibly applied to different tasks in this space. Our model is trained as a denoising autoencoder: we take temporally-ordered event sequences, shuffle them, delete some events, and then attempt to recover the original event sequence. This task teaches the model to make inferences given incomplete knowledge about the events in an underlying scenario. On the temporal ordering task, we show that our model is able to unscramble event sequences from existing datasets without access to explicitly labeled temporal training data, outperforming both a BERT-based pairwise model and a BERT-based pointer network. On event infilling, human evaluation shows that our model is able to generate events that fit better temporally into the input events when compared to GPT-2 story completion models.
Trending Questions (1)
What are the limitations of transfer learning with a unified text-to-text transformer?

The paper does not mention the limitations of transfer learning with a unified text-to-text transformer.