scispace - formally typeset
Search or ask a question
Journal Article

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

TL;DR: This article introduced a unified framework that converts all text-based language problems into a text-to-text format and compared pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks.
Abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new ``Colossal Clean Crawled Corpus'', we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
Abstract: Leaderboards have eased model development for many NLP datasets by standardizing their evaluation and delegating it to an independent external repository. Their adoption, however, is so far limited to tasks that can be reliably evaluated in an automatic manner. This work introduces GENIE, an extensible human evaluation leaderboard, which brings the ease of leaderboards to text generation tasks. GENIE automatically posts leaderboard submissions to crowdsourcing platforms asking human annotators to evaluate them on various axes (e.g., correctness, conciseness, fluency) and compares their answers to various automatic metrics. We introduce several datasets in English to GENIE, representing four core challenges in text generation: machine translation, summarization, commonsense reasoning, and machine comprehension. We provide formal granular evaluation metrics and identify areas for future research. We make GENIE publicly available and hope that it will spur progress in language generation models as well as their automatic and manual evaluation.

37 citations

Proceedings ArticleDOI
Yun He1, Ziwei Zhu1, Yin Zhang1, Qin Chen2, James Caverlee1 
01 Nov 2020
TL;DR: This work proposes a new disease knowledge infusion training procedure and evaluates it on a suite of BERT models including BERT, BioBERT, SciberT, ClinicalBerT, BlueBERt, and ALBERT to show that these models can be enhanced in nearly all cases, demonstrating the viability of diseaseknowledge infusion.
Abstract: Knowledge of a disease includes information of various aspects of the disease, such as signs and symptoms, diagnosis and treatment. This disease knowledge is critical for many health-related and biomedical tasks, including consumer health question answering, medical language inference and disease name recognition. While pre-trained language models like BERT have shown success in capturing syntactic, semantic, and world knowledge from text, we find they can be further complemented by specific information like knowledge of symptoms, diagnoses, treatments, and other disease aspects. Hence, we integrate BERT with disease knowledge for improving these important tasks. Specifically, we propose a new disease knowledge infusion training procedure and evaluate it on a suite of BERT models including BERT, BioBERT, SciBERT, ClinicalBERT, BlueBERT, and ALBERT. Experiments over the three tasks show that these models can be enhanced in nearly all cases, demonstrating the viability of disease knowledge infusion. For example, accuracy of BioBERT on consumer health question answering is improved from 68.29% to 72.09%, while new SOTA results are observed in two datasets. We make our data and code freely available.

36 citations

Posted Content
TL;DR: This survey discusses six different types of methods (Pruning, Quantization, Knowledge Distillation (KD), Parameter Sharing, Tensor Decomposition, and Sub-quadratic Transformer-based methods) for compression of such models to enable their deployment in real industry NLP projects.
Abstract: In recent years, the fields of natural language processing (NLP) and information retrieval (IR) have made tremendous progress thanksto deep learning models like Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTMs)networks, and Transformer [120] based models like Bidirectional Encoder Representations from Transformers (BERT) [24], GenerativePre-training Transformer (GPT-2) [94], Multi-task Deep Neural Network (MT-DNN) [73], Extra-Long Network (XLNet) [134], Text-to-text transfer transformer (T5) [95], T-NLG [98] and GShard [63]. But these models are humongous in size. On the other hand,real world applications demand small model size, low response times and low computational power wattage. In this survey, wediscuss six different types of methods (Pruning, Quantization, Knowledge Distillation, Parameter Sharing, Tensor Decomposition, andSub-quadratic Transformer based methods) for compression of such models to enable their deployment in real industry NLP projects.Given the critical need of building applications with efficient and small models, and the large amount of recently published work inthis area, we believe that this survey organizes the plethora of work done by the 'deep learning for NLP' community in the past fewyears and presents it as a coherent story.

36 citations

Proceedings ArticleDOI
01 Jun 2021
TL;DR: Zhang et al. as mentioned in this paper proposed an anchor-centred graph (ACG) based method for multi-view caption generation to improve the content diversity of generated captions.
Abstract: Text-based image captioning (TextCap) which aims to read and reason images with texts is crucial for a machine to understand a detailed and complex scene environment, considering that texts are omnipresent in daily life. This task, however, is very challenging because an image often contains complex texts and visual information that is hard to be described comprehensively. Existing methods attempt to extend the traditional image captioning methods to solve this task, which focus on describing the overall scene of images by one global caption. This is infeasible because the complex text and visual information cannot be described well within one caption. To resolve this difficulty, we seek to generate multiple captions that accurately describe different parts of an image in detail. To achieve this purpose, there are three key challenges: 1) it is hard to decide which parts of the texts of images to copy or paraphrase; 2) it is non-trivial to capture the complex relationship between diverse texts in an image; 3) how to generate multiple captions with diverse content is still an open problem. To conquer these, we propose a novel Anchor-Captioner method. Specifically, we first find the important tokens which are supposed to be paid more attention to and consider them as anchors. Then, for each chosen anchor, we group its rel-evant texts to construct the corresponding anchor-centred graph (ACG). Last, based on different ACGs, we conduct the multi-view caption generation to improve the content diversity of generated captions. Experimental results show that our method not only achieves SOTA performance but also generates diverse captions to describe images.

36 citations

Posted Content
TL;DR: Transformer as mentioned in this paper is a type of deep neural network mainly based on the self-attention mechanism, which has been applied to the field of natural language processing, and has received more and more attention from the computer vision community.
Abstract: Transformer, first applied to the field of natural language processing, is a type of deep neural network mainly based on the self-attention mechanism. Thanks to its strong representation capabilities, researchers are looking at ways to apply transformer to computer vision tasks. In a variety of visual benchmarks, transformer-based models perform similar to or better than other types of networks such as convolutional and recurrent networks. Given its high performance and less need for vision-specific inductive bias, transformer is receiving more and more attention from the computer vision community. In this paper, we review these vision transformer models by categorizing them in different tasks and analyzing their advantages and disadvantages. The main categories we explore include the backbone network, high/mid-level vision, low-level vision, and video processing. We also include efficient transformer methods for pushing transformer into real device-based applications. Furthermore, we also take a brief look at the self-attention mechanism in computer vision, as it is the base component in transformer. Toward the end of this paper, we discuss the challenges and provide several further research directions for vision transformers.

36 citations

Trending Questions (1)
What are the limitations of transfer learning with a unified text-to-text transformer?

The paper does not mention the limitations of transfer learning with a unified text-to-text transformer.