scispace - formally typeset
Search or ask a question
Journal Article

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

TL;DR: This article introduced a unified framework that converts all text-based language problems into a text-to-text format and compared pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks.
Abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new ``Colossal Clean Crawled Corpus'', we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: The authors proposed a simple network architecture, gMLP, based on MLPs with gating, and showed that it can perform as well as Transformers in key language and vision applications.
Abstract: Transformers have become one of the most important architectural innovations in deep learning and have enabled many breakthroughs over the past few years. Here we propose a simple network architecture, gMLP, based on MLPs with gating, and show that it can perform as well as Transformers in key language and vision applications. Our comparisons show that self-attention is not critical for Vision Transformers, as gMLP can achieve the same accuracy. For BERT, our model achieves parity with Transformers on pretraining perplexity and is better on some downstream NLP tasks. On finetuning tasks where gMLP performs worse, making the gMLP model substantially larger can close the gap with Transformers. In general, our experiments show that gMLP can scale as well as Transformers over increased data and compute.

35 citations

Proceedings ArticleDOI
12 Oct 2020
TL;DR: A novel Cascade Reasoning Network (CRN) is proposed that consists of a progressive attention module (PAM) and a multimodal reasoning graph (MRG) module that aims to explicitly model the connections and interactions between texts and visual concepts.
Abstract: We study the problem of text-based visual question answering (T-VQA) in this paper. Unlike general visual question answering (VQA) which only builds connections between questions and visual contents, T-VQA requires reading and reasoning over both texts and visual concepts that appear in images. Challenges in T-VQA mainly lie in three aspects: 1) It is difficult to understand the complex logic in questions and extract specific useful information from rich image contents to answer them; 2) The text-related questions are also related to visual concepts, but it is difficult to capture cross-modal relationships between the texts and the visual concepts; 3) If the OCR (optical character recognition) system fails to detect the target text, the training will be very difficult. To address these issues, we propose a novel Cascade Reasoning Network (CRN) that consists of a progressive attention module (PAM) and a multimodal reasoning graph (MRG) module. Specifically, the PAM regards the multimodal information fusion operation as a stepwise encoding process and uses the previous attention results to guide the next fusion process. The MRG aims to explicitly model the connections and interactions between texts and visual concepts. To alleviate the dependence on the OCR system, we introduce an auxiliary task to train the model with accurate supervision signals, thereby enhancing the reasoning ability of the model in question answering. Extensive experiments on three popular T-VQA datasets demonstrate the effectiveness of our method compared with SOTA methods. The source code is available at https://github.com/guanghuixu/CRN_tvqa.

35 citations

Journal ArticleDOI
TL;DR: This article summarized the state of the art in model compression for BERT and clarified the current best practices for compressing large-scale Transformer models, and provided insights into the workings of various methods.
Abstract: Pre-trained Transformer-based models have achieved state-of-the-art performance for various Natural Language Processing (NLP) tasks. However, these models often have billions of parameters, and thus are too resource-hungry and computation-intensive to suit low-capability devices or applications with strict latency requirements. One potential remedy for this is model compression, which has attracted a lot of research attention. Here, we summarize the research in compressing Transformers, focusing on the especially popular BERT model. In particular, we survey the state of the art in compression for BERT, we clarify the current best practices for compressing large-scale Transformer models, and we provide insights into the workings of various methods. Our categorization and analysis also shed light on promising future research directions for achieving lightweight, accurate, and generic NLP models.

35 citations

Proceedings ArticleDOI
01 Apr 2020
TL;DR: This work forms high-fidelity NLG as generation from logical forms in order to obtain controllable and faithful generations, and presents a new large-scale dataset, Logic2Text, with 10,753 descriptions involving common logic types paired with the underlying logical forms.
Abstract: Previous studies on Natural Language Generation (NLG) from structured data have primarily focused on surface-level descriptions of record sequences. However, for complex structured data, e.g., multi-row tables, it is often desirable for an NLG system to describe interesting facts from logical inferences across records. If only provided with the table, it is hard for existing models to produce controllable and high-fidelity logical generations. In this work, we formulate high-fidelity NLG as generation from logical forms in order to obtain controllable and faithful generations. We present a new large-scale dataset, Logic2Text, with 10,753 descriptions involving common logic types paired with the underlying logical forms. The logical forms show diversified graph structure of free schema, which pose great challenges on the model’s ability to understand the semantics. We experiment on (1) Fully-supervised training with the full datasets, and (2) Few-shot setting, provided with hundreds of paired examples; We compare several popular generation models and analyze their performances. We hope our dataset can encourage research towards building an advanced NLG system capable of natural, faithful, and human-like generation. The dataset and code is available at https://github.com/czyssrs/Logic2Text.

35 citations

Posted Content
TL;DR: Data augmentation (DA) as discussed by the authors alleviates data scarcity scenarios where deep learning techniques may fail by improving the diversity of training data, thereby helping the model to better generalize to unseen testing data.
Abstract: As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

34 citations

Trending Questions (1)
What are the limitations of transfer learning with a unified text-to-text transformer?

The paper does not mention the limitations of transfer learning with a unified text-to-text transformer.