scispace - formally typeset
Search or ask a question
Journal Article

Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

TL;DR: This article introduced a unified framework that converts all text-based language problems into a text-to-text format and compared pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks.
Abstract: Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts all text-based language problems into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled data sets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new ``Colossal Clean Crawled Corpus'', we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our data set, pre-trained models, and code.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
01 Jun 2021
TL;DR: A systematic study on the role of dimension reduction methods as well as the dimensionality of embedding vectors and sample sizes as a function of predictive performance finds that fine-tuning large models with a limited amount of data pose a significant difficulty which can be overcome with a pre-trained dimension reduction regime.
Abstract: In human-level NLP tasks, such as predicting mental health, personality, or demographics, the number of observations is often smaller than the standard 768+ hidden state sizes of each layer within modern transformer-based language models, limiting the ability to effectively leverage transformers. Here, we provide a systematic study on the role of dimension reduction methods (principal components analysis, factorization techniques, or multi-layer auto-encoders) as well as the dimensionality of embedding vectors and sample sizes as a function of predictive performance. We first find that fine-tuning large models with a limited amount of data pose a significant difficulty which can be overcome with a pre-trained dimension reduction regime. RoBERTa consistently achieves top performance in human-level tasks, with PCA giving benefit over other reduction methods in better handling users that write longer texts. Finally, we observe that a majority of the tasks achieve results comparable to the best performance with just 1/12 of the embedding dimensions.

18 citations

Proceedings ArticleDOI
01 Jul 2020
TL;DR: This paper propose a framework to decouple the problem of sentence in-filling from understanding, discourse-level planning, and generation, leveraging the power of existing large-scale pre-trained models.
Abstract: Missing sentence generation (or sentence in-filling) fosters a wide range of applications in natural language generation, such as document auto-completion and meeting note expansion. This task asks the model to generate intermediate missing sentences that can syntactically and semantically bridge the surrounding context. Solving the sentence infilling task requires techniques in natural language processing ranging from understanding to discourse-level planning to generation. In this paper, we propose a framework to decouple the challenge and address these three aspects respectively, leveraging the power of existing large-scale pre-trained models such as BERT and GPT-2. We empirically demonstrate the effectiveness of our model in learning a sentence representation for generation and further generating a missing sentence that fits the context.

18 citations

Posted Content
TL;DR: It is shown that past critically low amounts of pre-training data, an intermediate pre- training step on the task-specific corpus does not yield substantial improvements and well-performing models are obtained with as little as 100 MB of text.
Abstract: Recent advances in language modeling have led to computationally intensive and resource-demanding state-of-the-art models. In an effort towards sustainable practices, we study the impact of pre-training data volume on compact language models. Multiple BERT-based models are trained on gradually increasing amounts of French text. Through fine-tuning on the French Question Answering Dataset (FQuAD), we observe that well-performing models are obtained with as little as 100 MB of text. In addition, we show that past critically low amounts of pre-training data, an intermediate pre-training step on the task-specific corpus does not yield substantial improvements.

18 citations

Proceedings ArticleDOI
01 Dec 2020
TL;DR: This paper explores highly-abstractive multi-document summarization where the summary is explicitly conditioned on a user-given topic statement or question, suggesting the need for more abstractive benchmark collections when determining state-of-the-art models.
Abstract: Recent work has shown that pre-trained Transformers obtain remarkable performance on many natural language processing tasks, including automatic summarization. However, most work has focused on (relatively) data-rich single-document summarization settings. In this paper, we explore highly-abstractive multi-document summarization, where the summary is explicitly conditioned on a user-given topic statement or question. We compare the summarization quality produced by three state-of-the-art transformer-based models: BART, T5, and PEGASUS. We report the performance on four challenging summarization datasets: three from the general domain and one from consumer health in both zero-shot and few-shot learning settings. While prior work has shown significant differences in performance for these models on standard summarization tasks, our results indicate that with as few as 10 labeled examples, there is no statistically significant difference in summary quality, suggesting the need for more abstractive benchmark collections when determining state-of-the-art.

18 citations

Proceedings ArticleDOI
13 May 2020
TL;DR: The Generative Conversation Control model is introduced, an augmented and fine-tuned GPT-2 language model that conditions on past reference conversations to probabilistically model multi-turn conversations in the actor’s persona via conditioning on prior conversations of a target actor.
Abstract: Non-goal oriented dialog agents (i.e. chatbots) aim to produce varying and engaging conversations with a user; however, they typically exhibit either inconsistent personality across conversations or the average personality of all users. This paper addresses these issues by controlling an agent’s persona upon generation via conditioning on prior conversations of a target actor. In doing so, we are able to utilize more abstract patterns within a person’s speech and better emulate them in generated responses. This work introduces the Generative Conversation Control model, an augmented and fine-tuned GPT-2 language model that conditions on past reference conversations to probabilistically model multi-turn conversations in the actor’s persona. We introduce an accompanying data collection procedure to obtain 10.3M conversations from 6 months worth of Reddit comments. We demonstrate that scaling model sizes from 117M to 8.3B parameters yields an improvement from 23.14 to 13.14 perplexity on 1.7M held out Reddit conversations. Increasing model scale yielded similar improvements in human evaluations that measure preference of model samples to the held out target distribution in terms of realism (31% increased to 37% preference), style matching (37% to 42%), grammar and content quality (29% to 42%), and conversation coherency (32% to 40%). We find that conditionally modeling past conversations improves perplexity by 0.47 in automatic evaluations. Through human trials we identify positive trends between conditional modeling and style matching and outline steps to further improve persona control.

17 citations

Trending Questions (1)
What are the limitations of transfer learning with a unified text-to-text transformer?

The paper does not mention the limitations of transfer learning with a unified text-to-text transformer.