Expression and Secretion of Wild Type and Mutant GNE Proteins in Dictyostelium discoideum
31 Aug 2014-Cns & Neurological Disorders-drug Targets (CNS Neurol Disord Drug Targets)-Vol. 13, Iss: 7, pp 1263-1272
TL;DR: Dd can be used as an expression host for the production of recombinant and functionally active form of GNE and its mutant proteins that can be use for biophysical characterization and structural determination of G NE to understand the pathomechanism of HIBM.
Abstract: GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase) is a bifunctional enzyme which catalyzes the conversion of UDP-GlcNAc to ManNAc and ManNAc to ManNAc 6-phosphate, key steps in the sialic acid biosynthesis. Mutations in GNE lead to a neuromuscular disorder, Hereditary Inclusion Body Myopathy (HIBM). A major limitation in understanding the function of GNE is lack of recombinant full length GNE (rGNE) protein for detailed biophysical and structural characterization. In the present study, we have used Dictyostelium discoideum (Dd) as an alternate host for successful expression and secretion of functionally active form of GNE and its mutant proteins. We have generated Dd-AX3 stable cell lines harboring wtGNE or its mutants with Dd specific secretory signal sequence, PsA (prespore antigen). Upon starvation, rGNE was secreted in the medium from secretory vesicles. The rGNE was functionally active with epimerase activity (54±5.2 mU/mg) and kinase activity (66.45±3.48 mU/mg), while both epimerase and kinase activities of mutant GNE were drastically reduced. These activities were found to be statistically significant at p value < 0.05. Our study clearly demonstrates that Dd can be used as an expression host for the production of recombinant and functionally active form of GNE and its mutant proteins that can be used for biophysical characterization and structural determination of GNE to understand the pathomechanism of HIBM.
Citations
More filters
[...]
TL;DR: The biochemical mechanisms of known genetic defects in the hexosamine and CMP-sialic acid synthesis pathway in relation to the clinical phenotypes of congenital myasthenia, immunodeficiency or adult-onset myopathy are discussed.
Abstract: Background Congenital disorders of glycosylation are caused by defects in the glycosylation of proteins and lipids. Classically, gene defects with multisystem disease have been identified in the ubiquitously expressed glycosyltransferases required for protein N-glycosylation. An increasing number of defects are being described in sugar supply pathways for protein glycosylation with tissue-restricted clinical symptoms. Scope of review In this review, we address the hexosamine and sialic acid biosynthesis pathways in sugar metabolism. GFPT1, PGM3 and GNE are essential for synthesis of nucleotide sugars uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) and cytidine-5′-monophospho-N-acetylneuraminic acid (CMP-sialic acid) as precursors for various glycosylation pathways. Defects in these enzymes result in contrasting clinical phenotypes of congenital myasthenia, immunodeficiency or adult-onset myopathy, respectively. We therefore discuss the biochemical mechanisms of known genetic defects in the hexosamine and CMP-sialic acid synthesis pathway in relation to the clinical phenotypes. Major conclusions Both UDP-GlcNAc and CMP-sialic acid are important precursors for diverse protein glycosylation reactions and for conversion into other nucleotide-sugars. Defects in the synthesis of these nucleotide sugars might affect a wide range of protein glycosylation reactions. Involvement of multiple glycosylation pathways might contribute to disease phenotype, but the currently available biochemical information on sugar metabolism is insufficient to understand why defects in these pathways present with tissue-specific phenotypes. General significance Future research on the interplay between sugar metabolism and different glycosylation pathways in a tissue- and cell-specific manner will contribute to elucidation of disease mechanisms and will create new opportunities for therapeutic intervention. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
24 citations
[...]
TL;DR: Compared with the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria and full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme.
Abstract: The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) plays a key role in sialic acid production. It is different from the non-hydrolyzing enzymes for bacterial cell wall biosynthesis, and it is feed-back inhibited by the downstream product CMP-Neu5Ac. Here the complex crystal structure of the N-terminal epimerase part of human GNE shows a tetramer in which UDP binds to the active site and CMP-Neu5Ac binds to the dimer-dimer interface. The enzyme is locked in a tightly closed conformation. By comparing the UDP-binding modes of the non-hydrolyzing and hydrolyzing UDP-GlcNAc epimerases, we propose a possible explanation for the mechanistic difference. While the epimerization reactions of both enzymes are similar, Arg113 and Ser302 of GNE are likely involved in product hydrolysis. On the other hand, the CMP-Neu5Ac binding mode clearly elucidates why mutations in Arg263 and Arg266 can cause sialuria. Moreover, full-length modelling suggests a channel for ManNAc trafficking within the bifunctional enzyme.
21 citations
[...]
TL;DR: This review is summarising current GNE myopathy, scientific trends and open questions, which would be of significant interest for a wide neuromuscular diseases community.
Abstract: GNE myopathy is an ultra-rare autosomal recessive disease, which starts as a distal muscle weakness and ultimately leads to a wheelchair bound state. Molecular research and animal modelling significantly moved forward understanding of GNE myopathy mechanisms and suggested therapeutic interventions to alleviate the symptoms. Multiple therapeutic attempts are being made to supplement sialic acid depleted in GNE myopathy muscle cells. Translational research field provided valuable knowledge through natural history studies, patient registries and clinical trial, which significantly contributed to bringing forward an era of GNE myopathy treatment. In this review, we are summarising current GNE myopathy, scientific trends and open questions, which would be of significant interest for a wide neuromuscular diseases community.
20 citations
Cites background from "Expression and Secretion of Wild Ty..."
[...]
[...]
TL;DR: Dictyostelium discoideum is a soil amoeba that undertakes a remarkable, facultative shift to multicellularity when exposed to starvation and requires signal pathways that result in alteration of gene expression and finally show cell differentiation.
Abstract: Simple organisms are preferred for understanding the molecular and cellular function(s) of complex processes. Dictyostelium discoideum is a lower eukaryote, a protist and a cellular slime mould, which has been in recent times used for various studies such as cell differentiation, development, cell death, stress responses etc. It is a soil amoeba (unicellular) that undertakes a remarkable, facultative shift to multicellularity when exposed to starvation and requires signal pathways that result in alteration of gene expression and finally show cell differentiation. The amoebae aggregate, differentiate and form fruiting bodies with two terminally differentiated cells: the dead stalk (non-viable) and dormant spores (viable). In India, starting from the isolation of Dictyostelium species to morphogenesis, cell signalling and social evolution has been studied with many more new research additions. Advances in molecular genetics make Dictyostelium an attractive model system to study cell biology, biochemistry, signal transduction and many more.
4 citations
Cites background from "Expression and Secretion of Wild Ty..."
[...]
[...]
[...]
TL;DR: In this paper , the effect of GNE mutation on its enzymatic activity and identification of potential small effector molecules was investigated. But, the study was limited to E. coli.
Abstract: UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) is a bifunctional enzyme (N-terminal epimerase and C-terminal Kinase domain) that catalyses the rate limiting step in sialic acid biosynthesis. More than 200 homozygous missense or compound heterozygous mutations in GNE have been reported worldwide to cause a rare neuromuscular disorder, GNE myopathy. It is characterized by a slowly progressive defect in proximal and distal skeletal muscles with patients becoming wheel-chair-bound. There are no current approved therapies available for GNE myopathy. ManNAc therapy is currently in advanced clinical trials and has shown signs of slowing the disease progression in a phase 2 trial. The present study aims to understand the effect of GNE mutation on its enzymatic activity and identification of potential small effector molecules. We characterized different GNE mutations (p.Asp207Val, p.Val603Leu, p.Val727Met, p.Ile618Thr and p.Arg193Cys) prevalent in Asian population that were cloned, expressed and purified from Escherichia coli as full-length recombinant proteins. Our study demonstrates that full length GNE can be expressed in E. coli in its active form and analysed for the functional activity. Each mutation showed variation in epimerase and kinase activity and responded to the small effector molecules (metformin, BGP-15 kaempferol, catechin, quercetin) in a differential manner. Our study opens an area for futuristic structural determination of full length GNE and identification of potential therapeutic molecules.
2 citations
References
More filters
[...]
2,414 citations
"Expression and Secretion of Wild Ty..." refers methods in this paper
[...]
[...]
TL;DR: A simple axenic medium suitable for the growth of the myxamoebae of a strain of the cellular slime mould Dictyostelium discoideum is described and conditions suitable for initiating the cell differentiation of myxamonebae grown axenically are described.
Abstract: 1. A simple axenic medium suitable for the growth of the myxamoebae of a strain of the cellular slime mould Dictyostelium discoideum is described. 2. Procedures suitable for the growth of this strain in liquid and on solid media are described. 3. Conditions suitable for initiating the cell differentiation of myxamoebae grown axenically are described.
1,080 citations
[...]
TL;DR: Transport of the VSV-encoded glycoprotein between successive compartments of the Golgi has been reconstituted in a cell-free system and is measured, in a rapid and sensitive new assay, by the coupled incorporation of 3H-N-acetylglucosamine (GlcNAc).
Abstract: Transport of the VSV-encoded glycoprotein (G protein) between successive compartments of the Golgi has been reconstituted in a cell-free system and is measured, in a rapid and sensitive new assay, by the coupled incorporation of 3H-N-acetylglucosamine (GlcNAc). This glycosylation occurs when G protein is transported during mixed incubations from the "donor" compartment in Golgi from VSV-infected CHO clone 15B cells (missing a key Golgi GlcNAc transferase) to the next, successive "acceptor" compartment (containing the GlcNAc transferase) in Golgi from wild-type CHO cells. Golgi fractions used in this assay have been extensively purified, and account for all of the donor and acceptor activity in the cells. Together with several other lines of evidence, this indicates that the cell-free system is highly specific, measuring only transport between sequential compartments in the Golgi stack. Transport in vitro is almost as efficient as in the cell, and requires ATP and the cytosol fraction in addition to protein components on the cytoplasmic surface of the Golgi membranes.
643 citations
"Expression and Secretion of Wild Ty..." refers methods in this paper
[...]
[...]
TL;DR: Findings indicate that GNE is the gene responsible for recessive HIBM, a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions.
Abstract: Hereditary inclusion body myopathy (HIBM; OMIM 600737) is a unique group of neuromuscular disorders characterized by adult onset, slowly progressive distal and proximal weakness and a typical muscle pathology including rimmed vacuoles and filamentous inclusions. The autosomal recessive form described in Jews of Persian descent is the HIBM prototype. This myopathy affects mainly leg muscles, but with an unusual distribution that spares the quadriceps. This particular pattern of weakness distribution, termed quadriceps-sparing myopathy (QSM), was later found in Jews originating from other Middle Eastern countries as well as in non-Jews. We previously localized the gene causing HIBM in Middle Eastern Jews on chromosome 9p12-13 (ref. 5) within a genomic interval of about 700 kb (ref. 6). Haplotype analysis around the HIBM gene region of 104 affected people from 47 Middle Eastern families indicates one unique ancestral founder chromosome in this community. By contrast, single non-Jewish families from India, Georgia (USA) and the Bahamas, with QSM and linkage to the same 9p12-13 region, show three distinct haplotypes. After excluding other potential candidate genes, we eventually identified mutations in the UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (GNE) gene in the HIBM families: all patients from Middle Eastern descent shared a single homozygous missense mutation, whereas distinct compound heterozygotes were identified in affected individuals of families of other ethnic origins. Our findings indicate that GNE is the gene responsible for recessive HIBM.
429 citations
[...]
TL;DR: Nine cases from 4 different Iranian-Jewish families presented with generalized muscular weakness and Quadriceps muscle was the only leg muscle which retained its normal power and function even in advanced cases, suggesting an underlining neurogenic disorder.
Abstract: Nine cases from 4 different Iranian-Jewish families presented with generalized muscular weakness. Quadriceps muscle was the only leg muscle which retained its normal power and function even in advanced cases. Biopsies from severely involved muscles revealed a typical "rimmed vacuole myopathy" while the quadriceps and deltoid showed minimal changes. CK levels were normal or moderately elevated and the EMG pattern suggested an underlining neurogenic disorder. The possible neurogenic character of this autosomal recessive disorder is discussed with relevance to the rimmed vacuoles.
223 citations
"Expression and Secretion of Wild Ty..." refers background in this paper
[...]