scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extent of recovery from the effects of visual deprivation in kittens.

01 Nov 1965-Journal of Neurophysiology (American Physiological Society)-Vol. 28, Iss: 6, pp 1060-1072
TL;DR: Seven kittens were used, and the various procedures of deprivation and subsequent studies are summarized in Table 1.
Abstract: Seven kittens were used, and the various procedures of deprivation and subsequent studies are summarized in Table 1. In six animals the Iids of one eye were closed for the first 3 months of life. In the recovery period two of these kittens had the deprived eye opened. The other four had the deprived eye opened and the other (previously open) eye was closed. The seventh animal had both eyes closed for 3 months; the right eye was then opened. Recovery periods
Citations
More filters
Journal ArticleDOI
TL;DR: Kittens were visually deprived by suturing the lids of the right eye for various periods of time at different ages to study the effect of monocular eye closure on the number of cells that can be influenced by the previously closed eye.
Abstract: 1. Kittens were visually deprived by suturing the lids of the right eye for various periods of time at different ages. Recordings were subsequently made from the striate cortex, and responses from the two eyes compared. As previously reported, monocular eye closure during the first few months of life causes a sharp decline in the number of cells that can be influenced by the previously closed eye. 2. Susceptibility to the effects of eye closure begins suddenly near the start of the fourth week, remains high until some time between the sixth and eighth weeks, and then declines, disappearing finally around the end of the third month. Monocular closure for over a year in an adult cat produces no detectable effects. 3. During the period of high susceptibility in the fourth and fifth weeks eye closure for as little as 3-4 days leads to a sharp decline in the number of cells that can be driven from both eyes, as well as an over-all decline in the relative influence of the previously closed eye. A 6-day closure is enough to give a reduction in the number of cells that can be driven by the closed eye to a fraction of the normal. The physiological picture is similar to that following a 3-month monocular deprivation from birth, in which the proportion of cells the eye can influence drops from 85 to about 7%. 4. Cells of the lateral geniculate receiving input from a deprived eye are noticeably smaller and paler to Nissl stain following 3 or 6 days' deprivation during the fourth week. 5. Following 3 months of monocular deprivation, opening the eye for up to 5 yr produces only a very limited recovery in the cortical physiology, and no obvious recovery of the geniculate atrophy, even though behaviourally there is some return of vision in the deprived eye. Closing the normal eye, though necessary for behavioural recovery, has no detectable effect on the cortical physiology. The amount of possible recovery in the striate cortex is probably no greater if the period of eye closure is limited to weeks, but after a 5-week closure there is a definite enhancement of the recovery, even though it is far from complete.

2,697 citations

Book
01 Jan 1988
TL;DR: The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is considered in a general mathematical framework and a synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents compete.
Abstract: The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is considered in a general mathematical framework. A synaptic evolution scheme of a new kind is proposed in which incoming patterns rather than converging afferents complete. The change in the efficacy of a given synapse depends not only on instantaneous pre- and postsynaptic activities but also on a slowly varying time-averaged value of the postsynaptic activity. Assuming an appropriate nonlinear form this dependence, development of selectivity is obtained under quite general conditions on the sensory environment. One does not require nonlinearity of the neuron's integrative power nor does one need to assume any particular form for intracortical circuitry. This is first illustrated in simple cases, e.g., when the environment consists of only two different stimuli presented alternately in a random manner. The following formal statement then holds: the state of the system converges with probability 1 to points of maximum selectivity in the state space. We next consider the problem of early development of orientation selectivity and binocular interaction in primary visual cortex. Giving the environment an appropriate form, we obtain orientation tuning curves and ocular dominance comparable to what is observed in normally reared adult cats or monkeys. Simulations with binocular input and various types of normal or altered environments show good agreement with the relevant experimental data. Experiments are suggested that could test our theory further.

2,493 citations


Cites background from "Extent of recovery from the effects..."

  • ...…the visually excitable cells are still orientation selective at 6 weeks (and even beyond 24 months of age) and the proportion of binocular cells is less than normal (Wiesel and Hubel, 1965; Blakemore and Van Sluyters, 1975; Kratz and Spear, 1976; Leventhal and Hirsch, 1977; Watkins et al., 1978 )....

    [...]

  • ...…during a " critical " period (ranging from about 3 to about 12 weeks), results in a rapid loss of binocularity, to the profit of the open eye (Wiesel and Hubel, 1963, 1965); then, opening the closed eye and closing the experienced one may result in a complete reversal of ocular dominance…...

    [...]

  • ...Of all visual deprivation paradigms, putting one eye in a competitive advantage over the other has probably the most striking consequences: monocular lid suture (MD), if it is performed during a “critical” period (ranging from about 3 to about 12 weeks), results in a rapid loss of binocularity, to the profit of the open eye ( Wiesel and Hubel, 1963, 1965 ); then, opening the closed eye and closing the experienced one may result in a complete ......

    [...]

  • ...In animals whose eyelids have been sutured at birth and which are thus binocularly deprived of pattern vision (BD), a somewhat higher proportion (from 12 to 50%) of the visually excitable cells are still orientation selective at 6 weeks (and even beyond 24 months of age) and the proportion of binocular cells is less than normal ( Wiesel and Hubel, 1965; Blakemore and Van Sluyters, 1975; Kratz and Spear, 1976; Leventhal and Hirsch, 1977; ......

    [...]

Journal ArticleDOI
TL;DR: This article focuses on the neuronal changes that occur in response to complex stimulation by an enriched environment and emphasizes the behavioural and neurobiological consequences of specific elements of enrichment, especially exercise and learning.
Abstract: Neuronal plasticity is a central theme of modern neurobiology, from cellular and molecular mechanisms of synapse formation in Drosophila to behavioural recovery from strokes in elderly humans. Although the methods used to measure plastic responses differ, the stimuli required to elicit plasticity are thought to be activity-dependent. In this article, we focus on the neuronal changes that occur in response to complex stimulation by an enriched environment. We emphasize the behavioural and neurobiological consequences of specific elements of enrichment, especially exercise and learning.

2,281 citations


Cites background from "Extent of recovery from the effects..."

  • ...Hubel and Wiesel established a programme to examine the effects of selective visual deprivation during development on the anatomy and physiology of the visual corte...

    [...]

Journal ArticleDOI
TL;DR: This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.
Abstract: The "fetal" or "early" origins of adult disease hypothesis was originally put forward by David Barker and colleagues and stated that environmental factors, particularly nutrition, act in early life to program the risks for adverse health outcomes in adult life. This hypothesis has been supported by a worldwide series of epidemiological studies that have provided evidence for the association between the perturbation of the early nutritional environment and the major risk factors (hypertension, insulin resistance, and obesity) for cardiovascular disease, diabetes, and the metabolic syndrome in adult life. It is also clear from experimental studies that a range of molecular, cellular, metabolic, neuroendocrine, and physiological adaptations to changes in the early nutritional environment result in a permanent alteration of the developmental pattern of cellular proliferation and differentiation in key tissue and organ systems that result in pathological consequences in adult life. This review focuses on those experimental studies that have investigated the critical windows during which perturbations of the intrauterine environment have major effects, the nature of the epigenetic, structural, and functional adaptive responses which result in a permanent programming of cardiovascular and metabolic function, and the role of the interaction between the pre- and postnatal environment in determining final health outcomes.

1,814 citations

Journal ArticleDOI
TL;DR: In these experiments the use of monocular deprivation made it possible to compare adjacent geniculate layers, and also to compare the two eyes in their ability to influence cortical cells, so that each animal acted, in a sense, as its own control.
Abstract: IN THE NORMAL CAT OR KITTEN about four-fifths of cells in the striate cortex can be driven by both eyes (3, 4). If, however, one eye of a newborn kitten is sewn shut and the visual cortex recorded from 3 months later, only a small fraction of cells can be driven from the deprived eye (8) . In contrast, many cells in the latera .I geniculate are driven normally from the d ,eprived eye (7 ), suggesting that the abnormality occurs somewhere between geniculate cells and cortex. Since clear receptive-field orientations and directional preferences to movement are seen in cortical cells of newborn visually inexperienced kittens, the deprivation effects presumably represent some sort of disruption of innately determined connections, rather than a failure of postnatal development related to lack of experience. In these experiments the use of monocular deprivation made it possible to compare adjacent geniculate layers, and also to compare the two eyes in their ability to influence cortical cells, so that each animal acted, in a sense, as its own control. The results led us to expect that depriving both eyes for similar periods would lead to an almost total unresponsiveness of cortical cells to stimulation of either eye. That should be so, provided the effects of depriving one eye were independent of whether or not the other eye was simultaneously deprived. It seemed worthwhile to test such an assumption, since any interdependence of the two pathways would be of considerable interest. We accordingly raised kittens with both eyes covered by lid suture, and recorded from the striate cortex when the animals had reached an age of 23-43 months.

1,520 citations

References
More filters
Journal ArticleDOI
TL;DR: This method is used to examine receptive fields of a more complex type and to make additional observations on binocular interaction and this approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours.
Abstract: What chiefly distinguishes cerebral cortex from other parts of the central nervous system is the great diversity of its cell types and interconnexions. It would be astonishing if such a structure did not profoundly modify the response patterns of fibres coming into it. In the cat's visual cortex, the receptive field arrangements of single cells suggest that there is indeed a degree of complexity far exceeding anything yet seen at lower levels in the visual system. In a previous paper we described receptive fields of single cortical cells, observing responses to spots of light shone on one or both retinas (Hubel & Wiesel, 1959). In the present work this method is used to examine receptive fields of a more complex type (Part I) and to make additional observations on binocular interaction (Part II). This approach is necessary in order to understand the behaviour of individual cells, but it fails to deal with the problem of the relationship of one cell to its neighbours. In the past, the technique of recording evoked slow waves has been used with great success in studies of functional anatomy. It was employed by Talbot & Marshall (1941) and by Thompson, Woolsey & Talbot (1950) for mapping out the visual cortex in the rabbit, cat, and monkey. Daniel & Whitteiidge (1959) have recently extended this work in the primate. Most of our present knowledge of retinotopic projections, binocular overlap, and the second visual area is based on these investigations. Yet the method of evoked potentials is valuable mainly for detecting behaviour common to large populations of neighbouring cells; it cannot differentiate functionally between areas of cortex smaller than about 1 mm2. To overcome this difficulty a method has in recent years been developed for studying cells separately or in small groups during long micro-electrode penetrations through nervous tissue. Responses are correlated with cell location by reconstructing the electrode tracks from histological material. These techniques have been applied to

12,923 citations

Journal ArticleDOI
TL;DR: In these experiments the use of monocular deprivation made it possible to compare adjacent geniculate layers, and also to compare the two eyes in their ability to influence cortical cells, so that each animal acted, in a sense, as its own control.
Abstract: IN THE NORMAL CAT OR KITTEN about four-fifths of cells in the striate cortex can be driven by both eyes (3, 4). If, however, one eye of a newborn kitten is sewn shut and the visual cortex recorded from 3 months later, only a small fraction of cells can be driven from the deprived eye (8) . In contrast, many cells in the latera .I geniculate are driven normally from the d ,eprived eye (7 ), suggesting that the abnormality occurs somewhere between geniculate cells and cortex. Since clear receptive-field orientations and directional preferences to movement are seen in cortical cells of newborn visually inexperienced kittens, the deprivation effects presumably represent some sort of disruption of innately determined connections, rather than a failure of postnatal development related to lack of experience. In these experiments the use of monocular deprivation made it possible to compare adjacent geniculate layers, and also to compare the two eyes in their ability to influence cortical cells, so that each animal acted, in a sense, as its own control. The results led us to expect that depriving both eyes for similar periods would lead to an almost total unresponsiveness of cortical cells to stimulation of either eye. That should be so, provided the effects of depriving one eye were independent of whether or not the other eye was simultaneously deprived. It seemed worthwhile to test such an assumption, since any interdependence of the two pathways would be of considerable interest. We accordingly raised kittens with both eyes covered by lid suture, and recorded from the striate cortex when the animals had reached an age of 23-43 months.

1,520 citations

Journal ArticleDOI
TL;DR: The object of the present study was to influence cortical connections by some means less drastic than covering one or both eyes, and produced a divergent strabismus by cutting one of the extraocular muscles in each of four newborn kittens.
Abstract: BEFORE A KITTEN OPENS ITS EYES, and long before the eyes are used in visual exploration, single cells of the primary visual cortex respond to natural stimulation with the same specificity as is found in the adult (5). This suggests that the anatomical connections between retina and striate cortex are for the most part innate. During the first 3 months of life the connections are highly susceptible to the effects of visual deprivation, to the extent that exclusion of all form and some light from one eye leads to a severe decline in the ability of that eye to influence cortical cells. Anatomical and physiological evidence suggests that the defect is chiefly, though not entirely, a cortical one (7-9). The object of the present study was to influence cortical connections by some means less drastic than covering one or both eyes. We wished if possible to alter the input in such a way that there would be no question of effects on the visual pathway below the level of the striate cortex. A method was suggested by the well-known clinical observation that a child with a squint (strabismus or nonparallel visual axes) may suffer a deterioration of vision in one eye (amblyopia ex anopsia). Since the visual pathways from the two eyes are for practical purposes separate up to the level of the striate cortex, it is unlikely that in these children the defect is in the retina or geniculate. An artificial squint therefore seemed to provide a possible means of obtaining a cortical defect while sparing the retina and lateral geniculate body. Accordingly , we produced a divergent strabismus by cutting one of the extraocular muscles in each of four newborn kittens, with the plan of testing vision and recording from single cortical cells after several months to a year. When at length each eye was tested in these kittens by observing the ani-mal's behavior with the other eye covered the results were disappointing: there was not the slightest suggestion of any defect in vision in either eye. This was not entirely unexpected, since with both eyes uncovered the animals had appeared to fix at times with one eye and at times with the other. At this stage there seemed to be little point in proceeding further, for there- .

1,288 citations


"Extent of recovery from the effects..." refers background or result in this paper

  • ...Taken together, these two results reinforce our conclusions from the binocular closures and strabismus experiments (8, 3) in suggesting a strong interdependence in the pathways originating from the two eyes....

    [...]

  • ...The change resembles that seen in animals raised with squint or with alternating contact occluders (3), both conditions in which the synergic action of the two eyes is eliminated without the complication of complete disuse....

    [...]

Journal ArticleDOI
TL;DR: Single-unit recordings in the optic tract and lateral geniculate body of kittens in which one eye had been deprived of vision are described, and an anatomical examination of the visual pathways in these animals are examined.
Abstract: THEIMPORTANCEOFNORMALSENSORYSTIMULATION inthedevelopment and maintenance of the nervous system is now generally recognized. In the visual system this problem has usually been approached by examining the effects of sensory deprivation on structure and behavior (see reviews by Hebb (12) and Riesen (28)). An obvious way of extending this work would be to examine electrophysiologically the functional effects of visual deprivation, but such experiments require some knowledge of normal function. During the last 10 years single-cell responses have been examined and receptive-field arrangements compared at several levels in the cat’s visual pathway: in the retina (Zl), the lateral geniculate body (18), and the visual cortex (17, 19). This information provides the necessary background for a study of the immature and the stimulus-deprived visual system. The results of a physiological and anatomical study of the visual pathways in normal. and visually deprived kittens will be presented in a series of three papers. In the present paper we describe single-unit recordings in the optic tract and lateral geniculate body of kittens in which one eye had been deprived of vision, and an anatomical examination of the visual pathways in these animals. The second paper (20) will describe single-unit recordings in the striate cortex of newborn kittens. The final paper (32) will deal with responses of cells in the visual cortex of visually deprived animals.

1,238 citations


"Extent of recovery from the effects..." refers background or methods in this paper

  • ...(As discussed previously (6), cell sizes vary to some extent from one animal to the next, partly, no doubt, because of differences in fixation....

    [...]

  • ...Several kittens were therefore raised with the lids of one or both eyes sutured t !ogether for 3 months, as in previous experiments (6), and then the closed eye was reo pened and the animals were allowed to live for another 3-14 months before making observations....

    [...]

  • ...These include behavioral blindness, morphological changes in the lateral geniculate body, and disruption of innately determined cortical connections (2, 6-8)....

    [...]

  • ...Anatomica and physiological methods are described in other papers (1, 6, 8)....

    [...]