scispace - formally typeset
Open AccessJournal ArticleDOI

Extinction risk from climate change

Reads0
Chats0
TLDR
Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract
Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Projected distributions of novel and disappearing climates by 2100 AD

TL;DR: In this paper, the authors analyzed multimodel ensembles for the A2 and B1 emission scenarios produced for the fourth assessment report of the Intergovernmental Panel on Climate Change, with the goal of identifying regions projected to experience high magnitudes of local climate change, development of novel 21st-century climates, and/or the disappearance of extant climates.
Journal ArticleDOI

Adaptive Phenotypic Plasticity in Response to Climate Change in a Wild Bird Population

TL;DR: Using a 47-year population study of the great tit in the United Kingdom, it is shown that individual adjustment of behavior in response to the environment has enabled the population to track a rapidly changing environment very closely.
Journal ArticleDOI

Predicting global change impacts on plant species' distributions: Future challenges

TL;DR: This review proposes two main avenues to progress the understanding and prediction of the different processes occurring on the leading and trailing edge of the species' distribution in response to any global change phenomena and concludes with clear guidelines on how such modelling improvements will benefit conservation strategies in a changing world.
Journal ArticleDOI

Five Potential Consequences of Climate Change for Invasive Species

TL;DR: The stages of invasion known as the "invasion pathway" are used to identify 5 nonexclusive consequences of climate change for invasive species and the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management is emphasized.
References
More filters
Journal ArticleDOI

Biodiversity hotspots for conservation priorities

TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Journal ArticleDOI

Climate change 2001: the scientific basis

TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Journal ArticleDOI

A globally coherent fingerprint of climate change impacts across natural systems

TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Book

Species Diversity in Space and Time

TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Related Papers (5)