scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluated the evidence in support of alternative hypotheses involving effects of thermal stress on pikas, placing temperature sensors at 156 locations within pika habitats in the vicinity of 25 sites with historical records of pika in the Great Basin.
Abstract: Biotic responses to climate change will vary among taxa and across latitudes, elevational gradients, and degrees of insularity. However, due to factors such as phenotypic plasticity, ecotypic variation, and evolved tolerance to thermal stress, it remains poorly understood whether losses should be greatest in populations experiencing the greatest climatic change or living in places where the prevailing climate is closest to the edge of the species' bioclimatic envelope (e.g., at the hottest, driest sites). Research on American pikas (Ochotona princeps) in montane areas of the Great Basin during 1994-1999 suggested that 20th-century population extirpations were predicted by a combination of biogeographic, anthropogenic, and especially climatic factors. Surveys during 2005-2007 documented additional extirpations and within-site shifts of pika distributions at remaining sites. To evaluate the evidence in support of alternative hypotheses involving effects of thermal stress on pikas, we placed temperature sensors at 156 locations within pika habitats in the vicinity of 25 sites with historical records of pikas in the Basin. We related these time series of sensor data to data on ambient temperature from weather stations within the Historical Climate Network. We then used these highly correlated relationships, combined with long-term data from the same weather stations, to hindcast temperatures within pika habitats from 1945 through 2006. To explain patterns of loss, we posited three alternative classes of direct thermal stress: (1) acute cold stress (number of days below a threshold temperature); (2) acute heat stress (number of days above a threshold temperature); and (3) chronic heat stress (average summer temperature). Climate change was defined as change in our thermal metrics between two 31-yr periods: 1945-1975 and 1976-2006. We found that patterns of persistence were well predicted by metrics of climate. Our best models suggest some effects of climate change; however, recent and long-term metrics of chronic heat stress and acute cold stress, neither previously recognized as sources of stress for pikas, were some of the best predictors of pika persistence. Results illustrate that extremely rapid distributional shifts can be explained by climatic influences and have implications for conservation topics such as reintroductions and early-warning indicators.

185 citations

Journal ArticleDOI
TL;DR: It is validated that adult tolerance to thermal extremes provides a good correlate of current distributions, and both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.
Abstract: Climatic factors influence the distribution of ectotherms, raising the possibility that distributions of many species will shift rapidly under climate change and/or that species will become locally extinct. Recent studies have compared performance curves of species from different climate zones and suggested that tropical species may be more susceptible to climate change than those from temperate environments. However, in other comparisons involving responses to thermal extremes it has been suggested that mid-latitude populations are more susceptible. Using a group of 10 closely related Drosophila species with known tropical or widespread distribution, we undertake a detailed investigation of their growth performance curves and their tolerance to thermal extremes. Thermal sensitivity of life history traits (fecundity, developmental success, and developmental time) and adult heat resistance were similar in tropical and widespread species groups, while widespread species had higher adult cold tolerance under all acclimation regimes. Laboratory measurements of either population growth capacity or acute tolerance to heat and cold extremes were compared to daily air temperature under current (2002-2007) and future (2100) conditions to investigate if these traits could explain current distributions and, therefore, also forecast future effects of climate change. Life history traits examining the thermal sensitivity of population growth proved to be a poor predictor of current species distributions. In contrast, we validate that adult tolerance to thermal extremes provides a good correlate of current distributions. Thus, in their current distribution range, most of the examined species experience heat exposure close to, but rarely above, the functional heat resistance limit. Similarly, adult functional cold resistance proved a good predictor of species distribution in cooler climates. When using the species' functional tolerance limits under a global warming scenario, we find that both tropical and widespread Drosophila species will face a similar proportional reduction in distribution range under future warming.

184 citations


Cites background from "Extinction risk from climate change..."

  • ...Given the direct influence of temperature on population growth, survival, and sustained motor function, it is not surprising that studies are increasingly demonstrating shifts in animal and plant distributions related to rising global temperature (Parmesan & Yohe, 2003; Thomas et al., 2004; Perry et al., 2005; Chown & Gaston, 2008; P€ ortner & Farrell, 2008; Hofmann & Todgham, 2010)....

    [...]

  • ...…motor function, it is not surprising that studies are increasingly demonstrating shifts in animal and plant distributions related to rising global temperature (Parmesan & Yohe, 2003; Thomas et al., 2004; Perry et al., 2005; Chown & Gaston, 2008; P€ortner & Farrell, 2008; Hofmann & Todgham, 2010)....

    [...]

Journal ArticleDOI
TL;DR: It is argued that soil salinity needs to be more broadly acknowledged as a driving factor in plant ecology in order to understand and make more accurate predictions for the impact of environmental change on biodiversity and vegetation patterns throughout the semi-arid world.

184 citations

Book ChapterDOI
01 Jan 2012
TL;DR: In this paper, the authors outline a design for a systems science of sustainability that rises to this challenge, and describe how sustainability research, teaching, and engagement with the policy process can be organized to provide scientifically grounded, reliable knowledge that engages multiple stakeholders, that grapples with unavoidable issues of ethics, values, and purpose.
Abstract: From climate change, deforestation, and depletion of fossil fuels to overexploited fisheries, species extinction, and poisons in our food and water, our society is unsustainable and it is getting worse fast. Many advocate that overcoming these problems requires the development of systems thinking. We have long been told that the unsustainability of our society arises because we treat the world as unlimited and problems unconnected when we live on a finite “spaceship Earth” in which “there is no away” and “everything is connected to everything else.” The challenge lies in moving from slogans to specific tools and processes that help us understand complexity, design better policies, facilitate individual and organizational learning, and catalyze the technical, economic, social, political, and personal changes we need to create a sustainable society. Here I outline a design for a systems science of sustainability that rises to this challenge. Where the dynamics of complex systems are conditioned by multiple feedbacks, time delays, accumulations, and nonlinearities, our mental models generally ignore these elements of dynamic complexity; where the consequences of our actions spill out across time and space and across disciplinary boundaries, our universities, corporations, and governments are organized in silos that focus on the short term and fragment knowledge. I describe how sustainability research, teaching, and engagement with the policy process can be organized to provide scientifically grounded, reliable knowledge that crosses disciplinary boundaries, that engages multiple stakeholders, that grapples with unavoidable issues of ethics, values, and purpose, and that leads to action.

184 citations


Cites result from "Extinction risk from climate change..."

  • ...Contrary to the logic of “wait and see” there are long delays in every link of the chain (Fiddaman 2002 ; O’Neill and Oppenheimer 2002 ; Stachowicz et al. 2002 ; Alley et al. 2003 ; Thomas et al. 2004 ; Meehl et al. 2005 ; Wigley 2005 ; Solomon et al. 2009 ; Pereira et al. 2010 ) ....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors investigated the determinants of European-scale patterns in tree species composition and richness, addressing the following questions: (1) What is the relative importance of environment and history? History refers to lasting effects of past large-scale events and time-dependent cumulative effects of ongoing processes, notably dispersal limited range dynamics.
Abstract: Aim This study investigates the determinants of European-scale patterns in tree species composition and richness, addressing the following questions: (1) What is the relative importance of environment and history? History refers to lasting effects of past large-scale events and time-dependent cumulative effects of ongoing processes, notably dispersal limited range dynamics. (2) Among the environmental determinants, what is the relative importance of climate, soils, and forest cover? (3) Do the answers to questions 1 and 2 differ between conifers and Fagales, the two major monophyletic groups of European trees? Location The study area comprises most of Europe (34° N–72° N and 11° W–32° E). Methods Atlas data on native distributions of 54 large tree species at 50 × 50 km resolution were linked with climatic, edaphic, and forest cover maps in a geographical information system. Unconstrained (principal components analysis using Hellinger distance transformation and detrended correspondence analysis) and constrained ordinations (redundancy analysis using Hellinger distance transformation and canonical correspondence analysis) and multiple linear regressions were used to investigate the determinants of species composition and species richness, respectively. History is expected to leave its mark as broad spatial patterns and was represented by the nine spatial terms of a cubic trend surface polynomial. Results The main floristic pattern identified by all ordinations was a latitude-temperature gradient, while the lower axes corresponded mostly to spatial variables. Partitioning the floristic variation using constrained ordinations showed the mixed spatial-environmental and pure spatial fractions to be much greater than the pure environmental fraction. Biplots, forward variable selection, and partial analyses all suggested climatic variables as more important floristic determinants than forest cover or soil variables. Tree species richness peaked in the mountainous regions of East-Central and Southern Europe, except the Far West. Variation partitioning of species richness found the mixed spatial-environmental and pure spatial fractions to be much greater than the pure environmental fraction for all species combined and Fagales, but not for conifers. The scaled regression coefficients indicated climate as a stronger determinant of richness than soils or forest cover. While the dominant patterns were similar for conifers and Fagales, conifers exhibited less predictable patterns overall, a smaller pure spatial variation fraction relative to pure environmental fraction, and a greater relative importance of climate; all differences being more pronounced for species richness than for species composition. Main conclusions The analyses suggest that history is at least as important as current environment in controlling species composition and richness of European trees, with the exception of conifer species richness. Strong support for interpreting the spatial patterns as outcomes of historical processes, notably dispersal limitation, came from the observation that many European tree species naturalize extensively outside their native ranges. Furthermore, it was confirmed that climate predominates among environmental determinants of distribution and diversity patterns at large spatial scales. Finally, the particular patterns exhibited by conifers probably reflect greater environmental specialization and greater human impact. These findings warn against expecting the European tree flora to be able track fast future climate changes on its own.

184 citations


Cites background from "Extinction risk from climate change..."

  • ...…history (sensu Ricklefs & Latham, 1999) as determinants of large-scale species distributions is not only an important theoretical issue, but also an issue of crucial importance for predicting the effects of the impending nearfuture climatic changes (e.g. Skov & Svenning, 2004; Thomas et al., 2004)....

    [...]

  • ...…importance for predicting the effects of global change processes such as climatic change through largescale modelling of species ranges and community dynamics (e.g. Huntley et al., 1995; Sykes et al., 1996; Iverson & Prasad, 1998; Pearson & Dawson, 2003; Skov & Svenning, 2004; Thomas et al., 2004)....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations