scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work used the largest publicly available database of georeferenced marine fish records to determine its usefulness in depicting the diversity and distribution of this taxonomic group, and found that the completeness of taxonomic data was highly scale dependent, with completeness being lower at finer spatial resolutions.
Abstract: Taxonomic inventories (or species censuses) are the most elementary data in biogeography, macroecology and conservation biology. They play fundamental roles in the construction of species richness patterns, delineation of species ranges, quantification of extinction risk and prioritization of conservation efforts in hot spot areas. Given their importance, any issue related to the completeness of taxonomic inventories can have far-reaching consequences. Here, we used the largest publicly available database of georeferenced marine fish records to determine its usefulness in depicting the diversity and distribution of this taxonomic group. All records were grouped at multiple spatial resolutions to generate accumulation curves, from which the expected number of species were extrapolated using a variety of nonlinear models. Comparison of the inventoried number of species with that expected from the models was used to calculate the completeness of the taxonomic inventory at each resolution. In terms of the global number of fish species, we found that approximately 21% of the species remain to be described. In terms of spatial distribution, we found that the completeness of taxonomic data was highly scale dependent, with completeness being lower at finer spatial resolutions. At a 3° (approx. 350 km2) spatial resolution, less than 1.8% of the world's oceans have above 80% of their fish fauna currently described. Censuses of species were particularly incomplete in tropical areas and across the entire range of countries' gross domestic product (GDP), although the few censuses nearing completion were all along the coasts of a few developed countries or territories. Our findings highlight that failure to quantify the completeness of taxonomic inventories can introduce substantial flaws in the description of diversity patterns, and raise concerns over the effectiveness of conservation strategies based upon data that remain largely precarious.

173 citations

Journal ArticleDOI
TL;DR: In this paper, the availability of suitable climate space across Europe for the distributions of 47 species chosen to encompass a range of taxa (including plants, insects, birds and mammals) and to reflect dominant and threatened species from 10 habitats was modelled for the current climate and three climate change scenarios using the SPECIES neural network model.

173 citations

23 Nov 2014
TL;DR: Turn Down the Heat as discussed by the authors examines the likely impacts of present day (0.8°C), 2°C and 4°C warming above pre-industrial temperatures on agricultural production, water resources, ecosystem services and coastal vulnerability for affected populations.
Abstract: The data show that dramatic climate changes, heat and weather extremes are already impacting people, damaging crops and coastlines and putting food, water, and energy security at risk. Across the three regions studied in this report, record-breaking temperatures are occurring more frequently, rainfall has increased in intensity in some places, while drought-prone regions are getting dryer. In an overview of social vulnerability, the poor and underprivileged, as well as the elderly and children, are found to be often hit the hardest. There is growing evidence, that even with very ambitious mitigation action, warming close to 1.5°C above pre-industrial levels by mid-century is already locked-in to the Earth’s atmospheric system and climate change impacts such as extreme heat events may now be unavoidable.1 If the planet continues warming to 4°C, climatic conditions, heat and other weather extremes considered highly unusual or unprecedented today would become the new climate normal—a world of increased risks and instability. The consequences for development would be severe as crop yields decline, water resources change, diseases move into new ranges, and sea levels rise. The task of promoting human development, of ending poverty, increasing global prosperity, and reducing global inequality will be very challenging in a 2°C world, but in a 4°C world there is serious doubt whether this can be achieved at all. Immediate steps are needed to help countries adapt to the climate impacts being felt today and the unavoidable consequences of a rapidly warming world. The benefits of strong, early action on climate change, action that follows clean, low carbon pathways and avoids locking in unsustainable growth strategies, far outweigh the costs. Many of the worst projected climate impacts could still be avoided by holding warming to below 2°C. But, the time to act is now. This report focuses on the risks of climate change to development in Latin America and the Caribbean, the Middle East and North Africa, and parts of Europe and Central Asia. Building on earlier Turn Down the Heat reports this new scientific analysis examines the likely impacts of present day (0.8°C), 2°C and 4°C warming above pre-industrial temperatures on agricultural production, water resources, ecosystem services and coastal vulnerability for affected populations.

173 citations

Journal ArticleDOI
TL;DR: It is concluded that fine roots are the major component of root systems of most (if not all) annual and perennial plants, and plant root systems could be much longer, and probably include more biomass, than is widely accepted.
Abstract: We lack a thorough conceptual and functional understanding of fine roots. Studies that have focused on estimating the quantity of fine roots provide evidence that they dominate overall plant root length. We need a standard procedure to quantify root length/biomass that takes proper account of fine roots. Here we investigated the extent to which root length/biomass may be underestimated using conventional methodology, and examined the technical reasons that could explain such underestimation. Our discussion is based on original X-ray-based measurements and on a literature review spanning more than six decades. We present evidence that root-length recovery depends strongly on the observation scale/spatial resolution at which measurements are carried out; and that observation scales/resolutions adequate for fine root detection have an adverse impact on the processing times required to obtain precise estimates. We conclude that fine roots are the major component of root systems of most (if not all) annual and perennial plants. Hence plant root systems could be much longer, and probably include more biomass, than is widely accepted.

173 citations

Journal ArticleDOI
TL;DR: Model predictions suggest that three foundational, macroalgal species that occur along North-Atlantic shores will shift northwards as an assemblage or “unit” and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces.
Abstract: The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or "unit" and that phytogeographic changes will be most pronounced in the southern Arctic and the southern temperate provinces. Our models predict that Arctic shores in Canada, Greenland, and Spitsbergen will become suitable for all three species by 2100. Shores south of 45° North will become unsuitable for at least two of the three focal species on both the Northwest- and Northeast-Atlantic coasts by 2200. If these foundational species are unable to adapt to the rising temperatures, they will lose their centers of genetic diversity and their loss will trigger an unpredictable shift in the North-Atlantic intertidal ecosystem.

173 citations


Cites background from "Extinction risk from climate change..."

  • ...Species that fail to acclimatize physiologically or evolve genetically to increasing temperatures will either move northwards into cooler habitats (Walther et al. 2002; Parmesan and Yohe 2003; Parmesan 2005, 2006; Hickling et al. 2006; Thomas 2010) or become extinct (Thomas et al. 2004)....

    [...]

  • ...Received: 7 December 2012; Revised: 22 February 2013; Accepted: 4 March 2013 Ecology and Evolution 2013; 3(5): 1356– 1373 doi: 10.1002/ece3....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations