scispace - formally typeset
Open AccessJournal ArticleDOI

Extinction risk from climate change

Reads0
Chats0
TLDR
Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract
Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

read more

Content maybe subject to copyright    Report

Citations
More filters

SYNTHESES Running to stand still: adaptation and the response of plants to rapid climate change

TL;DR: It is argued that in fragmented landscapes, rapid climate change has the potential to overwhelm the capacity for adaptation in many plant populations and dramatically alter their genetic composition, resulting in a range-wide increase in extinction risk.
Journal ArticleDOI

Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints

TL;DR: In this article, the authors use a novel implementation of species distribution modelling (SDM) to assess the degree to which African continental-scale species distributions in a keystone tropical group, the palms (Arecaceae), are controlled by climate, non-climatic environmental factors, or non-environmental spatial constraints.
Journal ArticleDOI

Species Distribution Modeling in the Tropics: Problems, Potentialities, and the Role of Biological Data for Effective Species Conservation:

TL;DR: SDMs have a great potential to support biodiversity conservation in the tropics, by supporting the development of conservation strategies and plans, identifying knowledge gaps, and providing a tool to examine the potential impacts of environmental change, but for this potential to be fully realized, problems of data quality and availability need to be overcome.
Journal ArticleDOI

Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

TL;DR: The number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000, depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest.
References
More filters
Journal ArticleDOI

Biodiversity hotspots for conservation priorities

TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Journal ArticleDOI

Climate change 2001: the scientific basis

TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Journal ArticleDOI

A globally coherent fingerprint of climate change impacts across natural systems

TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Book

Species Diversity in Space and Time

TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Related Papers (5)