scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that the invasion success in south-western France could have been predicted using data from the native Asian range of the species, while data from both the native and invaded ranges are used to better predict its potential invasion range across all continents.

152 citations


Cites background from "Extinction risk from climate change..."

  • ...Besides their use in predicting potential impacts of global change on species extinction risk (Thomas et al., 2004; Thuiller et al., 2005a), in reserve planning (Wilson et al., 2005; Marini et al., 2009) or in identifying unknown distributional areas of rare species (Guisan et al., 2006), climatic…...

    [...]

  • ...Besides their use in predicting potential impacts of global change on species extinction risk (Thomas et al., 2004; Thuiller et al., 2005a), in reserve planning (Wilson et al....

    [...]

Journal ArticleDOI
TL;DR: This article examined climate change in this area and vegetation patterns influenced by biogeography, precipitation and elevation (NMS and CCA ordinations of GLORIA plots) and found that the Alpine environment has the highest plant diversity and most useful plants and is the most susceptible to climate change with impacts on traditional Tibetan culture and livelihoods.
Abstract: Tibetan culture and livelihoods depend on native plants for medicine, food, grazing, wood, as well as cash from market sales. The Medicine Mountains (part of the Hengduan Mountains) of the eastern Himalayas, with tremendous plant diversity derived from steep gradients of both elevation and precipitation, have traditionally been an important source of Tibetan medicinal plants. We examine climate change in this area and vegetation patterns influenced by biogeography, precipitation and elevation (NMS and CCA ordinations of GLORIA plots). The Alpine environment has the highest plant diversity and most useful plants and is the most susceptible to climate change with impacts on traditional Tibetan culture and livelihoods—particularly Tibetan medicine and herding.

152 citations


Cites background from "Extinction risk from climate change..."

  • ...Predicted extinctions of montane populations of animals and plants have drawn further attention to the plight of alpine species (Thomas et al., 2004; Thuiller et al., 2005; Parmesan, 2006)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated whether the SDMs generated with pseudo-absences are reliable and also if there are differences in the results obtained with profile and group discriminative techniques.
Abstract: Aim The presence-only data stored in natural history collections is the most important source of information available regarding the distribution of organisms These data and profile techniques can be used to generate species distribution models (SDMs), but pseudo-absences must be generated to use group discriminative techniques In this study, we evaluated whether the SDMs generated with pseudo-absences are reliable and also if there are differences in the results obtained with profile and group discriminative techniques Location Ecuador, South America Methods The SDMs were generated with a training data set for each of the five species of Anthurium and six different methods: two profile techniques (BIOCLIM and Gower’s distance index), three group discriminative techniques [logistic multiple regression (LMR), multivariate adaptative regression splines (MARS) and Maxent] and a mixed modelling approach genetic algorithm for rule-set production (GARP), which employs a combination of profile and group discriminative techniques and generates its own pseudo-absences For LMR, MARS and Maxent, three types of absences were generated: (1) random pseudo-absences in equal number to presences and excluding a buffer area around presences (except for Maxent, which assumes that this background sample includes presences), (2) a large number (10,000) of random pseudo-absences, also excluding a buffer area around each presence and (3) ‘target-group absences’ (TGA), consisting of sites where other species of the group have been collected by the specialist, but not the species being modelled To compare the predictive performance of the SDMs, the area under the curve statistic was calculated using an independent testing data set for each species Results MARS, Maxent and LMR produce better results than the profile techniques The models created with TGA are generally more accurate than those generated with pseudo-absences Main conclusions The advantages and disadvantages of different options for using pseudo-absences and TGA with profile and group discriminative modelling techniques are explained and recommendations are made for the future

152 citations

Book
10 Dec 2009
TL;DR: A detailed analysis of the interactions between a changing climate and Australia's rich but threatened biodiversity can be found in this paper, which is an important reference for policy makers, researchers, educators, students, journalists, environmental and conservation NGOs, NRM managers and private landholders with an interest in biodiversity conservation in a rapidly changing world.
Abstract: Australia's unique biodiversity is under threat from a rapidly changing climate. The effects of climate change are already discernible at all levels of biodiversity - genes, species, communities and ecosystems. Many of Australia's most valued and iconic natural areas - the Great Barrier Reef, south-western Australia, the Kakadu wetlands and the Australian Alps - are among the most vulnerable. But much more is at stake than saving iconic species or ecosystems. Australia's biodiversity is fundamental to the country's national identity, economy and quality of life. In the face of uncertainty about specific climate scenarios, ecological and management principles provide a sound basis for maximising opportunities for species to adapt, communities to reorganise and ecosystems to transform while maintaining basic functions critical to human society. This innovative approach to biodiversity conservation under a changing climate leads to new challenges for management, policy development and institutional design. This book explores these challenges, building on a detailed analysis of the interactions between a changing climate and Australia's rich but threatened biodiversity. Australia's Biodiversity and Climate Change is an important reference for policy makers, researchers, educators, students, journalists, environmental and conservation NGOs, NRM managers, and private landholders with an interest in biodiversity conservation in a rapidly changing world.

151 citations


Cites background from "Extinction risk from climate change..."

  • ...Much of the current literature on biodiversity emphasises species extinctions resulting from landscape transformation and other factors (e.g. Primack 2001; Thomas et al. 2004; Ward 2004)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors assess the impact of climate change on 37 endemic and nearly endemic herptiles of the Iberian Peninsula by predicting species distributions for three different times into the future (2020, 2050 and 2080) using an ensemble of bioclimatic models and different combinations of species dispersal ability, emission levels and global circulation models.
Abstract: Current climate change is a major threat to biodiversity. Species unable to adapt or move will face local or global extinction and this is more likely to happen to species with narrow climatic and habitat requirements and limited dispersal abilities, such as amphibians and reptiles. Biodiversity losses are likely to be greatest in global biodiversity hotspots where climate change is fast, such as the Iberian Peninsula. Here we assess the impact of climate change on 37 endemic and nearly endemic herptiles of the Iberian Peninsula by predicting species distributions for three different times into the future (2020, 2050 and 2080) using an ensemble of bioclimatic models and different combinations of species dispersal ability, emission levels and global circulation models. Our results show that species with Atlantic affinities that occur mainly in the North-western Iberian Peninsula have severely reduced future distributions. Up to 13 species may lose their entire potential distribution by 2080. Furthermore, our analysis indicates that the most critical period for the majority of these species will be the next decade. While there is considerable variability between the scenarios, we believe that our results provide a robust relative evaluation of climate change impacts among different species. Future evaluation of the vulnerability of individual species to climate change should account for their adaptive capacity to climate change, including factors such as physiological climate tolerance, geographical range size, local abundance, life cycle, behavioural and phenological adaptability, evolutionary potential and dispersal ability.

151 citations


Cites background from "Extinction risk from climate change..."

  • ...Throughout the history of Earth, climate has changed and species have coped and adapted to these changes, but current climate change is threatening biodiversity because it is fast compared with most past changes (Thomas et al., 2004)....

    [...]

  • ...However, species unable to achieve a sufficient level of adaptation will likely face local or global extinction and this is more likely to happen to species with restricted climate and habitat requirements, limited dispersal abilities and ectothermal physiology (Walther et al., 2002; Thomas et al., 2004; Massot et al., 2008)....

    [...]

  • ...…a sufficient level of adaptation will likely face local or global extinction and this is more likely to happen to species with restricted climate and habitat requirements, limited dispersal abilities and ectothermal physiology (Walther et al., 2002; Thomas et al., 2004; Massot et al., 2008)....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations