scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI
01 Jan 2007
TL;DR: This chapter uses LIGO as an application case study in workflow design and implementation and outlines a few directions for future development and provides some long-term vision for applications related to gravitational wave data analysis.
Abstract: Modern scientific experiments acquire large amounts of data that must be analyzed in subtle and complicated ways to extract the best results. The Laser Interferometer Gravitational Wave Observatory (LIGO) is an ambitious effort to detect gravitational waves produced by violent events in the universe, such as the collision of two black holes or the explosion of supernovae [37,258]. The experiment records approximately 1 TB of data per day, which is analyzed by scientists in a collaboration that spans four continents. LIGO and distributed computing have grown up side by side over the past decade, and the analysis strategies adopted by LIGO scientists have been strongly influenced by the increasing power of tools to manage distributed computing resources and the workflows to run on them. In this chapter, we use LIGO as an application case study in workflow design and implementation. The software architecture outlined here has been used with great efficacy to analyze LIGO data [2–5] using dedicated computing facilities operated by the LIGO Scientific Collaboration, the LIGO Data Grid. It is just the first step, however. Workflow design and implementation lies at the interface between computing and traditional scientific activities. In the conclusion, we outline a few directions for future development and provide some long-term vision for applications related to gravitational wave data analysis.

148 citations

Journal ArticleDOI
TL;DR: This work extends the mathematical theory of evolutionary rescue to a sudden environmental change when adaptation involves evolution at a single locus and considers adaptation using either new mutations or alleles from the standing genetic variation that begin rare.
Abstract: Evolutionary rescue occurs when a population that is threatened with extinction by an environmental change adapts to the change sufficiently rapidly to survive. Here we extend the mathematical theory of evolutionary rescue. In particular, we model evolutionary rescue to a sudden environmental change when adaptation involves evolution at a single locus. We consider adaptation using either new mutations or alleles from the standing genetic variation that begin rare. We obtain several results: i) the total probability of evolutionary rescue from either new mutation or standing variation; ii) the conditions under which rescue is more likely to involve a new mutation versus an allele from the standing genetic variation; iii) a mathematical description of the U-shaped curve of total population size through time, conditional on rescue; and iv) the time until the average population size begins to rebound as well as the minimal expected population size experienced by a rescued population. Our analysis requires taking into account a subtle population-genetic effect (familiar from the theory of genetic hitchhiking) that involves “oversampling” of those lucky alleles that ultimately sweep to high frequency. Our results are relevant to conservation biology, experimental microbial evolution, and medicine (e.g., the dynamics of antibiotic resistance).

148 citations

Journal ArticleDOI
TL;DR: In this article, the WildCountry program has identified connectivity at landscape, regional and continental scales as a critical component of an effective conservation system and identified seven categories of ecological phenomena that require landscape permeability and that must be considered when planning for the maintenance of biological diversity and ecological resilience in Australia.
Abstract: The existing system of nature reserves in Australia is inadequate for the long-term conservation and restoration of native biological diversity because it fails to accommodate, among other elements, large scale and long-term ecological processes and change, including physical and biotic transport in the landscape. This paper is an overview of the connectivity elements that inform a scientific framework for significantly improving the prospects for the long-term conservation of Australia's biodiversity. The framework forms the basis for the WildCountry programme. This programme has identified connectivity at landscape, regional and continental scales as a critical component of an effective conservation system. Seven categories of ecological phenomena are reviewed that require landscape permeability and that must be considered when planning for the maintenance of biological diversity and ecological resilience in Australia: (1) trophic relations at regional scales; (2) animal migration, dispersal, and other large scale movements of individuals and propagules; (3) fire and other forms of disturbance at regional scales; (4) climate variability in space and time and human forced rapid climate change; (5) hydroecological relations and flows at all scales; (6) coastal zone fluxes of organisms, matter, and energy; and, (7) spatially-dependent evolutionary processes at all scales. Finally, we mention eight cross-cutting themes that further illuminate the interactions and implications of the seven connectivity-related phenomena for conservation assessment, planning, research, and management, and we suggest how the results might be applied by analysts, planners, scientists, and community conservationists.

148 citations

Journal ArticleDOI
TL;DR: It is found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range, suggesting that projections of future species distributions cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.
Abstract: Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

147 citations

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations