scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A conceptual model of species and community attributes affecting secondary extinction likelihood, incorporating mechanisms that buffer organisms against partner loss is developed, suggesting improved conservation planning tactics and critical directions for research on secondary extinctions.
Abstract: Extinctions beget further extinctions when species lose obligate mutualists, predators, prey, or hosts. Here, we develop a conceptual model of species and community attributes affecting secondary extinction likelihood, incorporating mechanisms that buffer organisms against partner loss. Specialized interactors, including ‘cryptic specialists’ with diverse but nonredundant partner assemblages, incur elevated risk. Risk is also higher for species that cannot either evolve new traits following partner loss or obtain novel partners in communities reorganizing under changing environmental conditions. Partner loss occurs alongside other anthropogenic impacts; multiple stressors can circumvent ecological buffers, enhancing secondary extinction risk. Stressors can also offset each other, reducing secondary extinction risk, a hitherto unappreciated phenomenon. This synthesis suggests improved conservation planning tactics and critical directions for research on secondary extinctions.

130 citations

Journal ArticleDOI
TL;DR: This work considered how conservation has incorporated spatial scale into protecting biodiversity, how the projections of climate-change models vary with scale, and how the two do or do not align.
Abstract: To anticipate the rapidly changing world resulting from global climate change, the projections of climate models must be incorporated into conservation. This requires that the scales of conservation be aligned with the scales of climate-change projections. We considered how conservation has incorporated spatial scale into protecting biodiversity, how the projections of climate-change models vary with scale, and how the two do or do not align. Conservation planners use information about past and current ecological conditions at multiple scales to identify conservation targets and threats and guide conservation actions. Projections of climate change are also made at multiple scales, from global and regional circulation models to projections downscaled to local scales. These downscaled projections carry with them the uncertainties associated with the broad-scale models from which they are derived; thus, their high resolution may be more apparent than real. Conservation at regional or global scales is about establishing priorities and influencing policy. At these scales, the coarseness and uncertainties of global and regional climate models may be less important than what they reveal about possible futures. At the ecoregional scale, the uncertainties associated with downscaling climate models become more critical because the distributions of conservation targets on which plans are founded may shift under future climates. At a local scale, variations in topography and land cover influence local climate, often overriding the projections of broad-scale climate models and increasing uncertainty. Despite the uncertainties, ecologists and conservationists must work with climate-change modelers to focus on the most likely projections. The future will be different from the past and full of surprises; judicious use of model projections at appropriate scales may help us prepare.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables over a century (1911-2014).
Abstract: . Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911–2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.

129 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in � 2050 and � 2080.
Abstract: We present a first assessment of the potential impacts of anthropogenic climate change on the endemic flora of Namibia, and on its vegetation structure and function, for a projected climate in � 2050 and � 2080. We used both niche-based models (NBM) to evaluate the sensitivity of 159 endemic species to climate change (of an original 1020 plant species modeled) and a dynamic global vegetation model (DGVM) to assess the impacts of climate change on vegetation structure and ecosystem functioning. Endemic species modeled by NBM are moderately sensitive to projected climate change. Fewer than 5% are predicted to experience complete range loss by 2080, although more than 47% of the species are expected to be vulnerable (range reduction 430%) by 2080 if they are assumed unable to migrate. Disaggregation of results by life-form showed distinct patterns. Endemic species of perennial herb, geophyte and tree lifeformsare predicted to be negatively impacted in Namibia, whereas annual herb and succulent endemic species remain relatively stable by 2050 and 2080. Endemic annual herb species are even predicted to extend their range north-eastward into the tree and shrub savanna with migration, and tolerance of novel substrates. The current protected area network is predicted to meet its mandate by protecting most of the current endemicity in Namibia into the future. Vegetation simulated by DGVM is projected to experience a reduction in cover, net primary productivity and leaf area index throughout much of the country by 2050, with important implications for the faunal component of Namibia’s ecosystems, and the agricultural sector. The plant functional type (PFT) composition of the major biomes may be substantially affected by climate change and rising atmospheric CO2 ‐ currently widespread deciduous broad leaved trees and C4 PFTs decline, with the C4 PFT particularly negatively affected by rising atmospheric CO2 impacts by � 2080 and deciduous broad leaved trees more likely directly impacted by drying and warming. The C3 PFT may increase in prominence in the northwestern quadrant of the country by � 2080 as CO2 concentrations increase. These results suggest that substantial changes in species diversity, vegetation structure and ecosystem functioning can be expected in Namibia with anticipated climate change, although endemic plant richness may persist in the topographically diverse central escarpment region.

129 citations


Cites background from "Extinction risk from climate change..."

  • ...With expected increases in temperature and precipitation change, such impacts are likely be exacerbated into the future (Peterson et al., 2002; Thomas et al., 2004; Thuiller et al., 2005b)....

    [...]

Journal ArticleDOI
TL;DR: The common garden-like experiment provides evidence that warming alone extends the growing season, at both ends, even if stand-level impacts may be complicated by variation in other environmental factors.
Abstract: Predicting forest responses to warming climates relies on assumptions about niche and temperature sensitivity that remain largely untested. Observational studies have related current and historical temperatures to phenological shifts, but experimental evidence is sparse, particularly for autumn responses. A 4 year field experiment exposed four deciduous forest species from contrasting climates (Liquidambar styraciflua, Quercus rubra, Populus grandidentata, and Betula alleghaniensis) to air temperatures 2 and 4 °C above ambient controls, using temperature-controlled open top chambers. Impacts of year-round warming on bud burst (BB), senescence, and abscission were evaluated in relation to thermal provenance. Leaves emerged earlier in all species by an average of 4–9 days at +2 °C and 6–14 days at +4 °C. Magnitude of advance varied with species and year, but was larger for the first 2 °C increment than for the second. Effect of warming increased with early BB, favoring Liquidambar, but even BB of northern species advanced, despite temperatures exceeding those of the realized niche. Treatment differences in BB were inadequately explained by temperature sums alone. In autumn, chlorophyll was retained an average of 4 and 7 days longer in +2 and +4 °C treatments, respectively, and abscission delayed by 8 and 13 days. Growing seasons in the warmer atmospheres averaged 5–18 days (E2) and 6–28 days (E4) longer, according to species, with the least impact in Quercus. Results are compared with a 16 years record of canopy onset and offset in a nearby upland deciduous forest, where BB showed similar responsiveness to spring temperatures (2–4 days °C−1). Offset dates in the stand tracked August–September temperatures, except when late summer drought caused premature senescence. The common garden-like experiment provides evidence that warming alone extends the growing season, at both ends, even if stand-level impacts may be complicated by variation in other environmental factors.

129 citations


Cites background from "Extinction risk from climate change..."

  • ...Climate-driven changes in phenology, physiology, productivity, and reproductive fitness thus have the potential to alter resource allocation, range limits, community structure, function, and diversity (Sykes et al., 1996; Rehfeldt et al., 1999; Iverson & Prasad, 2001; Thomas et al., 2004; Brooker, 2006), but accurate predictions require an increased understanding of the mechanisms and component responses....

    [...]

  • ...…to define range boundaries (Sykes et al., 1996; Loehle, 1998; Chuine, 2010), global patterns of species distribution indicate that temperature sensitivity influences both the potential and realized niche of plants (Woodward, 1988; Iverson & Prasad, 2002; Thomas et al., 2004; McKenney et al., 2011)....

    [...]

  • ...…to alter resource allocation, range limits, community structure, function, and diversity (Sykes et al., 1996; Rehfeldt et al., 1999; Iverson & Prasad, 2001; Thomas et al., 2004; Brooker, 2006), but accurate predictions require an increased understanding of the mechanisms and component responses....

    [...]

  • ..., 1996; Loehle, 1998; Chuine, 2010), global patterns of species distribution indicate that temperature sensitivity influences both the potential and realized niche of plants (Woodward, 1988; Iverson & Prasad, 2002; Thomas et al., 2004; McKenney et al., 2011)....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations