scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the European Regional Development Fund Integrated Program IC&DT No1/SAESCTN/ALENT-07-0224-FEDER-001755.
Abstract: This research was funded through the European Regional Development Fund Integrated Program IC&DT No1/SAESCTN/ALENT-07-0224-FEDER-001755.

127 citations

Journal ArticleDOI
TL;DR: The proportion of new habitat that might be colonized within a century for all five tree species is low, suggesting that there is a serious lag between the potential movement of suitable habitat and the potential for the species to migrate into the new habitat.
Abstract: We used a combination of two models, DISTRIB and SHIFT, to estimate potential migration of five tree species into suitable habitat due to climate change over the next 100 years. These species, currently confined to the eastern half of the United States and not extending into Canada, are Diospyros virginiana (persimmon), Liquidambar styraciflua (sweetgum), Oxydendrum arboreum (sourwood), Pinus taeda (loblolly pine), and Quercus falcata var. falcata (southern red oak). DISTRIB uses a statistical approach to assess potential suitable habitat under equilibrium of 2 × CO2. SHIFT uses a cellular automata approach to estimate migration and is driven primarily by the abundance of the species near the boundary, forest density inside and outside of the boundary, and distance between cells. For each cell outside the current boundary, SHIFT creates an estimate of the probability that each unoccupied target cell will become colonized over 100 years. By evaluating the probability of colonization within the potential ‘new’ suitable habitat, we can estimate the proportion of new habitat that might be colonized within a century. This proportion is low (<15%) for all five species, suggesting that there is a serious lag between the potential movement of suitable habitat and the potential for the species to migrate into the new habitat. However, humans could hasten the migration of certain species by physically moving the propagules, especially for certain rare species that are unable to move sufficiently through fragmented landscapes, or even more common species, e.g., beech, that have lost many of their animal dispersers.

127 citations

Journal ArticleDOI
TL;DR: The Millennium Ecosystem Assessment as mentioned in this paper is built on a conceptual framework that links biodiversity to the services ecosystems provide to society and explores the potential of an econometric modeling exercise by conducting a world wide meta-analysis.
Abstract: The Millennium Ecosystem Assessment is built on a conceptual framework that links biodiversity to the services ecosystems provide to society. Based on this framework, we first compile market and non-market forest valuation studies and, secondly, explore the potential of an econometric modeling exercise by conducting a world wide meta-analysis. This exercise aims to highlight the mapping of biodiversity indicators and assesses their respective role on the valuation exercise. Our results show that biodiversity loss is having an effect on forest ecosystem values. In addition, these effects reveal to be dependent on the type of services and global geo-climatic regions.

127 citations

Journal ArticleDOI
Bo Wei1, Rulin Wang1, Kai Hou1, Xuying Wang, Wei Wu1 
TL;DR: Wang et al. as discussed by the authors modelled current and future distribution of C. tinctorius based on three representative concentration pathways (RCP2.6, RCP4.5 and RCP8.5) for the year 2050s and 2070s using a maximum entropy model (MaxEnt) and geographical information system (GIS).

127 citations

Journal ArticleDOI
02 Mar 2012-PLOS ONE
TL;DR: A framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list is developed.
Abstract: Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.

127 citations


Cites background from "Extinction risk from climate change..."

  • ...Climate change exacerbates these familiar stressors which, together, are predicted to cause mass global extinctions [1]....

    [...]

  • ...Climate change poses significant threats to global biodiversity [1]....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations