scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
04 Nov 2009-PLOS ONE
TL;DR: This investigation has measured the percutaneous passage of two test molecules and three heavily used herbicides in the skin of the frog Rana esculenta and of the pig ear by using the same experimental protocol and a simple apparatus which minimizes the edge effect.
Abstract: Dramatic declines in amphibian populations have been described all over the world since the 1980s. The evidence that the sensitivity to environmental threats is greater in amphibians than in mammals has been generally linked to the observation that amphibians are characterized by a rather permeable skin. Nevertheless, a numerical comparison of data of percutaneous (through the skin) passage between amphibians and mammals is lacking. Therefore, in this investigation we have measured the percutaneous passage of two test molecules (mannitol and antipyrine) and three heavily used herbicides (atrazine, paraquat and glyphosate) in the skin of the frog Rana esculenta (amphibians) and of the pig ear (mammals), by using the same experimental protocol and a simple apparatus which minimizes the edge effect, occurring when the tissue is clamped in the usually used experimental device. The percutaneous passage (P) of each substance is much greater in frog than in pig. LogP is linearly related to logKow (logarithm of the octanol-water partition coefficient). The measured P value of atrazine was about 134 times larger than that of glyphosate in frog skin, but only 12 times in pig ear skin. The FoD value (Pfrog/Ppig) was 302 for atrazine, 120 for antipyrine, 66 for mannitol, 29 for paraquat, and 26 for glyphosate. The differences in structure and composition of the skin between amphibians and mammals are discussed.

119 citations


Cites background from "Extinction risk from climate change..."

  • ...Causes of biodiversity loss include overexploitation and habitat loss, caused either by climate change [16] or by direct human activity [17]....

    [...]

Journal ArticleDOI
01 Jan 2012-Oryx
TL;DR: It is argued that the evidence of increasing extinction rates, exacerbated by climate change, challenges the wisdom of a heavy dependence on in situ strategies and necessitates increased development of ex situ approaches.
Abstract: In situ conservation is central to contemporary global biodiversity protection and is the predominant emphasis of international regulation and funding strategies. Ex situ approaches, in contrast, have been relegated to a subsidiary role and their direct contributions to conservation have been limited. We draw on a variety of sources to make the case for an enhanced role for ex situ conservation. We note the advances occurring within institutions specializing in ex situ conservation and stress that, although much remains to be done, many constraints are being addressed. We argue that the evidence of increasing extinction rates, exacerbated by climate change, challenges the wisdom of a heavy dependence on in situ strategies and necessitates increased development of ex situ approaches. A number of different techniques that enable species and their habitats tosurvive should now be explored. These could build on the experience of management systems that have already demonstrated the effective integration of in situ and ex situ techniques and hybrid approaches. For organizations specializing in ex situ conservation to become more effective, however, they will require tangible support from the institutions of global biodiversity governance. Resistance is anticipated because in situ conservation is entrenched through powerful groups and organizations that exert influence on global conservation policy and facilitate the flow of funding. The chasm that has traditionally divided in situ and ex situ approaches may diminish as approaches are combined. Moreover, the relentless loss of the ‘wild’ may soon render the in situ / ex situ distinction misleading, or even obsolete. Keywords Botanical gardens, captive breeding, climate

119 citations


Cites background from "Extinction risk from climate change..."

  • ...Crises facing the in situ paradigm Projections of species distributions in scenarios of future climate indicate high numbers of species threatened by climate change alone (Thomas et al., 2004) or in conjunction with land-use changes (Jetz et al., 2007)....

    [...]

Journal ArticleDOI
TL;DR: Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes, and a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes is supported.
Abstract: Giant pandas (Ailuropoda melanoleuca) are one of the most widely recognized endangered species globally. Habitat loss and fragmentation are the main threats, and climate change could significantly impact giant panda survival. We integrated giant panda habitat information with general climate models (GCMs) to predict future geographic distribution and fragmentation of giant panda habitat. Results support a major general prediction of climate change—a shift of habitats towards higher elevation and higher latitudes. Our models predict climate change could reduce giant panda habitat by nearly 60% over 70 years. New areas may become suitable outside the current geographic range but much of these areas is far from the current giant panda range and only 15% fall within the current protected area system. Long-term survival of giant pandas will require the creation of new protected areas that are likely to support suitable habitat even if the climate changes.

119 citations

Posted ContentDOI
11 Mar 2020-bioRxiv
TL;DR: The impacts of climate change on insects in particular have the potential to be more severe than might have been expected a decade ago, and practical measures are suggested that include the protection of diverse portfolios of species, not just those inhabiting what are currently the most pristine areas.
Abstract: Insects have diversified through 400 million years of Earth’s changeable climate, yet recent and ongoing shifts in patterns of temperature and precipitation pose novel challenges as they combine with decades of other anthropogenic stressors including the conversion and degradation of land. Here we consider how insects are responding to recent climate change, while summarizing the literature on long-term monitoring of insect populations in the context of climatic fluctuations. Results to date suggest that climate change impacts on insects have the potential to be considerable, even when compared to changes in land use. The importance of climate is illustrated with a case study from the butterflies of Northern California, where we find that population declines have been severe in high-elevation areas removed from the most immediate effects of habitat loss. These results shed light on the complexity of montane-adapted insects responding to changing abiotic conditions and raise questions about the utility of temperate mountains as refugia during the Anthropocene. We consider methodological issues that would improve syntheses of results across long-term insect datasets and highlight directions for future empirical work. Significance statement Anthropogenic climate change poses multiple threats to society and biodiversity, and challenges our understanding of the resilience of the natural world. We discuss recent ideas and evidence on this issue and conclude that the impacts of climate change on insects in particular have the potential to be more severe than might have been expected a decade ago. Finally, we suggest practical measures that include the protection of diverse portfolios of species, not just those inhabiting what are currently the most pristine areas.

119 citations

Journal ArticleDOI
TL;DR: In this article, the authors used Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate-severity scenarios at 2070, taking the impacts of land transformation on species' ranges into account.
Abstract: Aim To determine the potential combined effects of climate change and land transformation on the modelled geographic ranges of Banksia. Location Mediterranean climate South West Australian Floristic Region (SWAFR). Methods We used the species distribution modelling software Maxent to relate current environmental conditions to occurrence data for 18 Banksia species, and subsequently made spatial predictions using two simple dispersal scenarios (zero and universal), for three climate-severity scenarios at 2070, taking the impacts of land transformation on species' ranges into account. The species were chosen to reflect the biogeography of Banksia in the SWAFR. Results Climate-severity scenario, dispersal scenario, biogeographic distribution and land transformation all influenced the direction and magnitude of the modelled range change responses for the 18 species. The predominant response of species to all climate change scenarios was range contraction, with exceptions for some northern and widespread species. Including land transformation in estimates of modelled geographic range size for the three climate-severity scenarios generally resulted in smaller gains and larger declines in species ranges across both dispersal scenarios. Including land transformation and assuming zero dispersal resulted, as expected, in the greatest declines in projected range size across all species. Increasing climate change severity greatly increased the risk of decline in the 18 Banksia species, indicating the critical role of mitigating future emissions. Main conclusions The combined effects of climate change and land transformation may have significant adverse impacts on endemic Proteaceae in the SWAFR, especially under high emissions scenarios and if, as expected, natural migration is limiting. Although these results need cautious interpretation in light of the many assumptions underlying the techniques used, the impacts identified warrant a clear focus on monitoring across species ranges to detect early signs of change, and experiments that determine physiological thresholds for species in order to validate and refine the models. © 2009 Western Australian Government.

119 citations


Cites background from "Extinction risk from climate change..."

  • ...In the last two decades, correlative SDMs have been increasingly used in conservation planning and more recently for predicting the impacts of climate change on biodiversity (Thomas et al., 2004; Guisan & Thuiller, 2005)....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations