scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: During the Paleocene-Eocene Thermal Maximum (PETM), ∼56 Mya, thousands of petagrams of carbon were released into the ocean-atmosphere system with attendant changes in the carbon cycle, climate, ocean chem- istry, and marine and continental ecosystems as discussed by the authors.
Abstract: During the Paleocene-Eocene Thermal Maximum (PETM), ∼56 Mya, thousands of petagrams of carbon were released into the ocean-atmosphere system with attendant changes in the carbon cycle, climate, ocean chem- istry, and marine and continental ecosystems. The period of carbon release is thought to have lasted <20 ka, the duration of the whole event was ∼200 ka, and the global temperature increase was 5-8 ◦ C. Terrestrial and marine or- ganisms experienced large shifts in geographic ranges, rapid evolution, and changes in trophic ecology, but few groups suffered major extinctions with the exception of benthic foraminifera. The PETM provides valuable insights into the carbon cycle, climate system, and biotic responses to environmental change that are relevant to long-term future global changes.

706 citations


Cites background from "Extinction risk from climate change..."

  • ...The higher rate of environmental change in future projections does not explain the higher extinction rates in the models, because Thomas et al. (2004) effectively assumed instantaneous dispersal....

    [...]

  • ...Projections are ∼35% extinction globally across many groups for >2◦C of warming (Thomas et al. 2004)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors presented the vulnerability assessment of the ATEAM land use scenarios, which can help answer multidisciplinary questions such as: which are the main regions or sectors that are vulnerable to global change? How do the vulnerabilities of two regions compare? Which scenario is the least, or most, harmful for a given region or sector?

705 citations


Cites background from "Extinction risk from climate change..."

  • ...All rights reserved. oi:10.1016/j.agee.2005.11.025 forest area in the tropics is declining (Geist and Lambin, 2002), many species are threatened with extinction (Thomas et al., 2004), and rising atmospheric carbon dioxide results in global warming (IPCC, 2001a,b,c)....

    [...]

  • ...025 forest area in the tropics is declining (Geist and Lambin, 2002), many species are threatened with extinction (Thomas et al., 2004), and rising atmospheric carbon dioxide results in global warming (IPCC, 2001a,b,c)....

    [...]

Journal ArticleDOI
TL;DR: The proximate causes of climate-change related extinctions and their empirical support are reviewed to support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change.
Abstract: Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

703 citations


Cites background from "Extinction risk from climate change..."

  • ...Anthropogenic climate change is recognized as a major threat to global biodiversity, one that may lead to the extinction of thousands of species over the next 100 years [1–7]....

    [...]

Journal ArticleDOI
TL;DR: Present-day species richness of long-lived vascular plant specialists was better explained by past than current landscape patterns, indicating an extinction debt, while short-lived butterfly specialists showed no evidence for an extinction Debt at a time scale of c.
Abstract: Intensification or abandonment of agricultural land use has led to a severe decline of semi-natural habitats across Europe. This can cause immediate loss of species but also time-delayed extinctions, known as the extinction debt. In a pan-European study of 147 fragmented grassland remnants, we found differences in the extinction debt of species from different trophic levels. Present-day species richness of long-lived vascular plant specialists was better explained by past than current landscape patterns, indicating an extinction debt. In contrast, short-lived butterfly specialists showed no evidence for an extinction debt at a time scale of c. 40 years. Our results indicate that management strategies maintaining the status quo of fragmented habitats are insufficient, as time-delayed extinctions and associated co-extinctions will lead to further biodiversity loss in the future.

694 citations

Journal ArticleDOI
TL;DR: The conservation case is stronger for stability measures of function than stock and flux measures, in part because it is easier to attribute value unambiguously to stability and in partBecause stock and fluid measures of functions are anticipated to be more affected by multitrophic communities.
Abstract: ▪ Abstract It has often been argued that conserving biodiversity is necessary for maintaining ecosystem functioning. We critically evaluate the current evidence for this argument. Although there is substantial evidence that diversity is able to affect function, particularly for plant communities, it is unclear if these patterns will hold for realistic scenarios of extinctions, multitrophic communities, or larger spatial scales. Experiments are conducted at small spatial scales, the very scales at which diversity tends to increase owing to exotics. Stressors may affect function by many pathways, and diversity-mediated effects on function may be a minor pathway, except in the case of multiple-stressor insurance effects. In general, the conservation case is stronger for stability measures of function than stock and flux measures, in part because it is easier to attribute value unambiguously to stability and in part because stock and flux measures of functions are anticipated to be more affected by multitroph...

684 citations

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations