scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
01 Jan 2011-Oikos
TL;DR: In this article, the authors show that habitat type (grassland, heathland, deciduous woodland) is a major modifier of the temperature extremes experienced by organisms, and that the microclimatic effects of habitat and topography must be included in studies if we are to obtain sufficiently detailed projections of the ecological impacts of climate change to develop detailed adaptation strategies for the conservation of biodiversity.
Abstract: Most multicellular terrestrial organisms experience climate at scales of millimetres to metres, yet most species-climate associations are analysed at resolutions of kilometres or more. Because individuals experience heterogeneous microclimates in the landscape, species sometimes survive where the average background climate appears unsuitable, and equally may be eliminated from sites within apparently suitable grid cells where microclimatic extremes are intolerable. Local vegetation structure and topography can be important determinants of fine-resolution microclimate, but a literature search revealed that the vast majority of bioclimate studies do not include fine-scale habitat information, let alone a representation of how habitat affects microclimate. In this paper, we show that habitat type (grassland, heathland, deciduous woodland) is a major modifier of the temperature extremes experienced by organisms. We recorded differences among these habitats of more than 5°C in monthly temperature maxima and minima, and of 10°C in thermal range, on a par with the level of warming expected for extreme future climate change scenarios. Comparable differences were found in relation to variation in local topography (slope and aspect). Hence, we argue that the microclimatic effects of habitat and topography must be included in studies if we are to obtain sufficiently detailed projections of the ecological impacts of climate change to develop detailed adaptation strategies for the conservation of biodiversity.

435 citations

Journal Article
TL;DR: In this paper, the effects of CO 2 on aquatic organisms are investigated in terms of depressed metabolic rates and reduced ion exchange and protein synthesis rates, which result in shifts in metabolic equilibria and slowed growth.
Abstract: Currently rising CO 2 levels in atmosphere and marine surface waters as well as projected scenarios of CO 2 disposal in the ocean emphasize that CO 2 sensitivities need to be investigated in aquatic organisms, especially in animals which may well be the most sensitive. Moreover, to understand causes and effects, we need to identify the physiological processes that are sensitive to CO 2 beyond the current emphasis on calcification. Few animals may be acutely sensitive to moderate CO 2 increases, but subtle changes due to long-term exposure may already have started to be felt in a wide range of species. CO 2 effects identified in invertebrate fauna from habitats characterized by oscillating CO 2 levels include depressed metabolic rates and reduced ion exchange and protein synthesis rates. These result in shifts in metabolic equilibria and slowed growth. Long-term moderate hypercapnia has been observed to produce enhanced mortality with as yet unidentified cause and effect relationships. During future climate change, simultaneous shifts in temperature, CO 2 , and hypoxia levels will enhance sensitivity to environmental extremes relative to a change in just one of these variables. Some interactions between these variables result from joint effects on the same physiological mechanisms. Such interactions need to be considered in terms of future increases in atmospheric CO 2 and its uptake by the ocean as well as in terms of currently proposed mitigation scenarios. These include purposeful injection of CO 2 in the deep ocean or Fe fertilization of the surface ocean, which reduces subsurface O 2 levels. The resulting ecosystem shifts could develop progressively, rather than beyond specific thresholds, such that effects parallel CO 2 oscillations. It is unsure to what extent and how quickly species may adapt to permanently elevated CO 2 levels by microevolutionary compensatory processes.

434 citations

Journal ArticleDOI
TL;DR: In this article, the effects of atmospheric CO2 levels on aquatic organisms were investigated in the context of aquatic organisms, especially the most sensitive, animals, and the physiological processes sensitive to CO2 in animals.
Abstract: Currently rising CO2 levels in atmosphere and marine surface waters as well as projected scenarios of CO2 disposal in the ocean emphasize that CO2 sensitivities need to be investigated in aquatic organisms, especially the most sensitive, animals. Moreover, to understand causes and effects, we need to identify the physiological processes sensitive to CO2 in animals. While the number of animals acutely sensitive to moderate CO2 increments may be small, long-term effects may have already begun in a wide range of species and these could drive shifts in ecological equilibria. Such effects not only include a disturbance in calcification. Recent studies of invertebrate fauna pre-adapted to oscillating CO2 levels in their habitat revealed a depression of metabolic rate associated with a reduction in ion exchange and protein synthesis rates as well as a shift in metabolic equilibria, resulting in a slowing of growth. Enhanced mortality has also been observed under long-term moderate hypercapnia with as yet unidentified cause and effect relationships. In a climate change scenario, simultaneous changes in temperature, CO2, and hypoxia levels would enhance sensitivity to environmental extremes relative to a change in only one of these variables. Some of these interactions are elicited through effects on the same physiological mechanisms, and need to be considered in estimating effects of atmospheric CO2 entry into the ocean. They also need to be considered in currently discussed mitigation scenarios such as direct injection of CO2 in the deep ocean or fertilizing the surface ocean with Fe, which reduces subsurface O2 contents. With changing CO2 levels, ecosystem shifts may develop progressively rather than beyond specific thresholds such that effects parallel CO2 oscillations. It is presently unclear, to what extent and how quickly species may adapt to permanently elevated CO2 levels by micro-evolutionary compensatory processes.

432 citations

Journal ArticleDOI
TL;DR: This article argued that the strongly deterministic and reductionist BEM rely on biological assumptions that are much more commonly violated in nature than Pearson & Dawson (2003) assume, and that the statistical methods currently used for model validation overestimate model fits as a result of pseudoreplication.
Abstract: INTRODUCTION In a recent issue of Global Ecology and Biogeo-graphy , Pearson & Dawson (2003) provided an informative review of the use of bioclimate envelope models (BEM) for predicting future distributional ranges of temperate plant species under expected global climate change. The authors discuss several criticisms of the BEM approach and they conclude that these need not be a major drawback when applied as a starting point for predicting the impacts of potential climate change on species ranges. Here, I argue that the strongly deterministic and reductionist BEM rely on biological assumptions that are much more commonly violated in nature than Pearson & Dawson (2003) assume. Moreover, the statistical methods currently used for model validation overestimate model fits as a result of pseudoreplication. Both features make BEM prone to produce artificially optimistic scenarios of future climate change impacts on plant distributions. Little doubt exists that climate determines the large-scale distributions of many temperate plant species (Woodward, 1987). However , ongoing range shifts are affected by a multitude of other constraints and processes acting on population performance (e.g. These differ greatly across species' ranges from their expanding to their eroding margins, and so also does the character of the respective populations (Lesica & Allendorf, 1995; Davis & Shaw, 2001). This will most probably result in geographically differential responses to changing environmental conditions , a point largely ignored by BEM approaches. In the following, I will comment on three major biological critiques of BEM that have been reviewed and downplayed by Pearson & Dawson (2003). BIOTIC INTERACTIONS BEM treat species as if they were acting independently of their biotic environment, thus neglecting potential effects of predation, competition or mutualisms on range dynamics. Pearson & Dawson (2003) argue accordingly that interactions between species may shape their spatial distributions on fine geographical scales, but are of minor importance at coarse scales, which are the main focus of BEM. However biotic interactions, not climate, are commonly considered the principal determinants of low-latitude range limits (Brown et al ., 1996). Moreover, ecological research on biological invasions (unintended 'large-scale experiments') has broadly documented that biotic interactions affect species' performance throughout their established ranges. The release of invaders from their specialist antagonists in invaded areas underpins improved performances as compared with populations within the original range, and thus constitutes a key factor promoting the invasion process (Keane & Crawley, 2002). Range dynamics themselves are likewise affected by biotic …

431 citations

Journal ArticleDOI
TL;DR: Overall, the results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years.
Abstract: Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the "warm edges" of species' ranges (i.e., lower latitudes and elevations), contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%), in animals than in plants (50% versus 39%), and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%). Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

429 citations

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations