scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: By focusing on some of the 70 documented extinctions as case studies, it is suggested that two types of extinction might be common for insects but rare for other taxa: extinction of narrow habitat specialists and coextinctions of affiliates with the extinctions of their hosts.
Abstract: Most extinctions estimated to have occurred in the historical past, or predicted to occur in the future, are of insects. Despite this, the study of insect extinctions has been neglected. Only 70 modern insect extinctions have been documented, although thousands are estimated to have occurred. By focusing on some of the 70 documented extinctions as case studies, I considered ways in which insect extinctions may differ from those of other taxa. These case studies suggested that two types of extinction might be common for insects but rare for other taxa: extinction of narrow habitat specialists and coextinctions of affiliates with the extinctions of their hosts. Importantly, both of these forms of extinction are often ignored by conservation programs focused on vertebrates and plants. Anecdotal evidence and recent simulations suggest that many insect extinctions may have already occurred because of loss of narrow habitat specialists from restricted habitats and the loss of hosts. If we are serious about insect conservation, we need to spend more time and money documenting such extinctions. To neglect such extinctions is to ignore the majority of species that are or were in need of conservation.

324 citations


Cites result from "Extinction risk from climate change..."

  • ...Other estimates, such as those by Thomas et al. (2004), would yield higher estimates of insect extinctions....

    [...]

Journal ArticleDOI
26 Aug 2009-PLOS ONE
TL;DR: In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific.
Abstract: Concern over climate change has led the U.S. to consider a cap-and-trade system to regulate emissions. Here we illustrate the land-use impact to U.S. habitat types of new energy development resulting from different U.S. energy policies. We estimated the total new land area needed by 2030 to produce energy, under current law and under various cap-and-trade policies, and then partitioned the area impacted among habitat types with geospatial data on the feasibility of production. The land-use intensity of different energy production techniques varies over three orders of magnitude, from 1.9–2.8 km2/TW hr/yr for nuclear power to 788–1000 km2/TW hr/yr for biodiesel from soy. In all scenarios, temperate deciduous forests and temperate grasslands will be most impacted by future energy development, although the magnitude of impact by wind, biomass, and coal to different habitat types is policy-specific. Regardless of the existence or structure of a cap-and-trade bill, at least 206,000 km2 will be impacted without substantial increases in energy efficiency, which saves at least 7.6 km2 per TW hr of electricity conserved annually and 27.5 km2 per TW hr of liquid fuels conserved annually. Climate policy that reduces carbon dioxide emissions may increase the areal impact of energy, although the magnitude of this potential side effect may be substantially mitigated by increases in energy efficiency. The possibility of widespread energy sprawl increases the need for energy conservation, appropriate siting, sustainable production practices, and compensatory mitigation offsets.

323 citations


Cites background from "Extinction risk from climate change..."

  • ...of habitat per TW hr/yr). While many studies have quantified the likely effect of climate change on the Earth's biodiversity due to climate-driven habitat loss, concluding that a large proportion of species could be driven extinct...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors synthesize conceptual problems with species distribution models (SDMs) associated with interspecific interactions, dispersal, ecological equilibria and time lags, evolution, and the sampling of niche space.
Abstract: Climate change presents unprecedented challenges for biological conservation. Agencies are increasingly looking to modeled projections of species' distributions under future climates to inform management strategies. As government scientists with a responsibility to communicate the best available science to our policy colleagues, we question whether current modeling approaches and outputs are practically useful. Here, we synthesize conceptual problems with species distribution models (SDMs) associated with interspecific interactions, dispersal, ecological equilibria and time lags, evolution, and the sampling of niche space. Although projected SDMs have undoubtedly been critical in alerting us to the magnitude of climate change impacts, we conclude that until they offer insights that are more precise than what we can derive from basic ecological theory, we question their utility in deciding how to allocate scarce funds to large-scale conservation projects.

322 citations


Cites background from "Extinction risk from climate change..."

  • ...When Thomas et al. (2004) reported that a large percentage of species may be “committed to extinction” within 50 years, many news agencies misreported that over a quarter of all life forms would “be extinct” by this time (Ladle et al. 2004)....

    [...]

  • ...Climate change is acting in an environment already threatened by other processes (Thomas et al. 2004, Lewis 2006)....

    [...]

  • ...Most models do not take these considerations into account, and those that do have used simple assumptions (no migration, full migration; Thomas et al. 2004)....

    [...]

  • ...Species’ extinction risk formed a key part of Stern’s review of climate change impacts for the British government (2006), and numerous SDM studies were cited (e.g., Pearson and Dawson 2003, Thuiller et al. 2004, Thomas et al. 2004, McClean et al. 2005, Pearson et al. 2006)....

    [...]

  • ...Some studies have pooled multiple models or applied other principles (notably species–area relationships) to extrapolate global extinction rates from climate change (Thomas et al. 2004)....

    [...]

Journal ArticleDOI
TL;DR: The best solution to freshwater invertebrate conservation may be to move away from a species-based approach that is largely derived from a terrestrial model towards broader, regional approaches that try to satisfy legitimate human needs for fresh water while preserving as much biodiversity as possible.
Abstract: Freshwater invertebrate conservation faces 5 important challenges. First, ˜10,000 species of freshwater invertebrates around the world may already be extinct or imperiled. Second, human pressures on freshwater resources are intense and will increase in the coming decades, putting yet more species at risk. Third, scientific knowledge about freshwater invertebrates, although substantial and useful for many groups, is far less than for the vertebrates for which much of contemporary conservation biology was designed. Even the best-known freshwater invertebrates that have achieved legal protection are perhaps 1% as well studied as the typical vertebrate. Fourth, because freshwater ecosystems are downhill from and embedded in their watersheds, freshwater conservation usually has to manage entire watersheds rather than small local sites where imperiled species occur. Fifth, society spends only modest amounts of money for freshwater invertebrate conservation. The median expenditure in Fiscal Year 2003 for...

322 citations


Cites background from "Extinction risk from climate change..."

  • ...Thomas et al. (2004) concluded that climate change could extinguish 9 to 52% of terrestrial species, with species having poor dispersal abilities falling near the upper end of the range....

    [...]

01 Jan 2007

322 citations


Cites methods from "Extinction risk from climate change..."

  • ...…greatly extended computer power has emboldened a new generation of bioclimatic niche-based modellers to predict changes in species distribution and prevalence under a warming climate using correlative methods (e.g., Bakkenes et al., 2002; Thomas et al., 2004; see also Chapter 4, Section 4.4.11)....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations