scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the sensitivity of 277 mammals at African scale to climate change at 10 0 resolution, using static LT assumptions in a ‘first-cut’ estimate, in the absence of credible future LT trends.
Abstract: Recent observations show that human-induced climate change (CC) and land transformation (LT) are threatening wildlife globally. Thus, there is a need to assess the sensitivity of wildlife on large spatial scales and evaluate whether national parks (NPs), a key conservation tools used to protect species, will meet their mandate under future CC and LT conditions. Here, we assess the sensitivity of 277 mammals at African scale to CC at 10 0 resolution, using static LT assumptions in a ‘first-cut’ estimate, in the absence of credible future LT trends. We examine the relationship between species’ current distribution and macroclimatic variables using generalized additive models, and include LT indirectly as a filter. Future projections are derived using two CC scenarios (for 2050 and 2080) to estimate the spatial patterns of loss and gain in species richness that might ultimately result. We then apply the IUCN Red List criteria A3(c) of potential range loss to evaluate species sensitivity. We finally estimate the sensitivity of 141 NPs in terms of both species richness and turnover. Assuming no spread of species, 10–15% of the species are projected to fall within the critically endangered or extinct categories by 2050 and between 25% and 40% by 2080. Assuming unlimited species spread, less extreme results show proportions dropping to approximately 10–20% by 2080. Spatial patterns of richness loss and gain show contrasting latitudinal patterns with a westward range shift of species around the species-rich equatorial zone in central Africa, and an eastward shift in southern Africa, mainly because of latitudinal aridity gradients across these ecological transition zones. Xeric shrubland NPs may face significant richness losses not compensated by species influxes. Other NPs might expect substantial losses and influxes of species. On balance, the NPs might ultimately realize a substantial shift in the mammalian species composition of a magnitude unprecedented in recent geological time. To conclude, the effects of global CC and LT on wildlife communities may be most noticeable not as a loss of species from their current ranges, but instead as a fundamental change in community composition.

321 citations


Cites background from "Extinction risk from climate change..."

  • ...A reduction in the absolute range of a species is likely to lead to an increased risk of local extinction (Thomas et al., 2004; Thuiller et al., 2005b)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a structured review of the AM literature that relates to biodiversity and ecosystem management, with the aim of quantifying how rare AM projects actually are, and investigate whether AM practitioners in terrestrial and aquatic systems described the same problems; the degree of consistency in how the term "adaptive management" was applied; the extent to which AM projects were sustained over time; and whether articles describing AM project were more highly cited than comparable non-AM articles.

320 citations


Cites background from "Extinction risk from climate change..."

  • ...…on natural systems take many forms including habitat loss, alteration and fragmentation (Collinge, 2009; Fahrig, 2003; Lindenmayer and Fischer, 2006), spread of invasive plants and animals (Simberloff, 2010; Vitousek et al., 1997), and climate change (Lawler et al., 2010; Thomas et al., 2004)....

    [...]

Journal ArticleDOI
16 Jan 2008-PLOS ONE
TL;DR: The magnitude of the potential impacts estimated for European breeding birds emphasises the importance of climatic change.
Abstract: Background Climatic change is expected to lead to changes in species' geographical ranges. Adaptation strategies for biodiversity conservation require quantitative estimates of the magnitude, direction and rates of these potential changes. Such estimates are of greatest value when they are made for large ensembles of species and for extensive (sub-continental or continental) regions. Methodology/Principal Findings For six climate scenarios for 2070–99 changes have been estimated for 431 European breeding bird species using models relating species' distributions in Europe to climate. Mean range centroid potentially shifted 258–882 km in a direction between 341° (NNW) and 45° (NE), depending upon the climate scenario considered. Potential future range extent averaged 72–89% of the present range, and overlapped the present range by an average of 31–53% of the extent of the present range. Even if potential range changes were realised, the average number of species breeding per 50×50 km grid square would decrease by 6·8–23·2%. Many species endemic or near-endemic to Europe have little or no overlap between their present and potential future ranges; such species face an enhanced extinction risk as a consequence of climatic change. Conclusions/Significance Although many human activities exert pressures upon wildlife, the magnitude of the potential impacts estimated for European breeding birds emphasises the importance of climatic change. The development of adaptation strategies for biodiversity conservation in the face of climatic change is an urgent need; such strategies must take into account quantitative evidence of potential climatic change impacts such as is presented here.

319 citations


Cites background or methods from "Extinction risk from climate change..."

  • ...Species whose future potential range is markedly smaller in extent than their present range also face the likelihood of population reduction and heightened extinction risk [13], even if they are able to respond sufficiently rapidly that their realised range corresponds to their potential range....

    [...]

  • ...Because the extent to which species will achieve range changes depends upon the rate of climatic change relative to the rate at which species can extend their range boundaries [11,12], potential future number of species per grid cell was estimated for ‘worst case’ and ‘best case’ alternatives [13], i....

    [...]

  • ...Projected climatic change during the present century also can be expected to increase extinction risk [13], especially for species with small range extents and those occupying climatic conditions that are unlikely to persist in the future....

    [...]

  • ...As in previous studies of the potential impacts of climatic change [13], this number was calculated in two ways, firstly assuming ‘perfect’ dispersal (N), i....

    [...]

Journal ArticleDOI
TL;DR: An analysis of the distribution and mitochondrial DNA variability of nine montane aquatic insect species in Europe suggests range contractions will be accompanied by severe loss of genetic diversity, implying morphospecies-scale assessments may greatly underestimate potential biodiversity losses from climate change.
Abstract: Climate impacts on biodiversity are usually assessed at the morphospecies level. An analysis of the distribution and mitochondrial DNA variability of nine montane aquatic insect species in Europe suggests range contractions will be accompanied by severe loss of genetic diversity. These results imply that morphospecies-scale assessments may greatly underestimate potential biodiversity losses from climate change.

316 citations

Journal ArticleDOI
TL;DR: The contributions and merits of an applied behavior analysis approach to encouraging proenvironment behavior are reviewed, along with a discussion of ways behavioral science can play a greater role in protecting the environment as discussed by the authors.
Abstract: The contributions and merits of an applied behavior analysis approach to encouraging proenvironment behavior are reviewed, along with a discussion of ways behavioral science can play a greater role in protecting the environment. After presenting the most serious threats to the earth's environment, the targets, settings and techniques of the behavioral intervention literature are reviewed. It is argued that behavior analysis can play a greater role in solving environmental problems through (a) reexamination and expansion of intervention targets, (b) increased focus on long-term maintenance of pro-environment behavior, and (c) more effective dissemination of intervention strategies and research findings.

316 citations


Cites background from "Extinction risk from climate change..."

  • ...Stern (2000) and others explain that corporations are responsible for more environmental degradation than are individuals, and that changing individual behaviors addresses only a mere fraction of the environmental crisis....

    [...]

References
More filters
Journal ArticleDOI
24 Feb 2000-Nature
TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Abstract: Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify 'biodiversity hotspots' where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a 'silver bullet' strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

24,867 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Second, for cerrado vegetation in Brazil, high rates of habitat destructio...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
02 Jan 2003-Nature
TL;DR: A diagnostic fingerprint of temporal and spatial ‘sign-switching’ responses uniquely predicted by twentieth century climate trends is defined and generates ‘very high confidence’ (as laid down by the IPCC) that climate change is already affecting living systems.
Abstract: Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.

9,761 citations


"Extinction risk from climate change..." refers background in this paper

  • ...gif" NDATA ITEM> ]> Climate change over the past ∼30 years has produced numerous shifts in the distributions and abundances of specie...

    [...]

Journal ArticleDOI
10 Mar 2000-Science
TL;DR: This study identified a ranking of the importance of drivers of change, aranking of the biomes with respect to expected changes, and the major sources of uncertainties in projections of future biodiversity change.
Abstract: Scenarios of changes in biodiversity for the year 2100 can now be developed based on scenarios of changes in atmospheric carbon dioxide, climate, vegetation, and land use and the known sensitivity of biodiversity to these changes. This study identified a ranking of the importance of drivers of change, a ranking of the biomes with respect to expected changes, and the major sources of uncertainties. For terrestrial ecosystems, land-use change probably will have the largest effect, followed by climate change, nitrogen deposition, biotic exchange, and elevated carbon dioxide concentration. For freshwater ecosystems, biotic exchange is much more important. Mediterranean climate and grassland ecosystems likely will experience the greatest proportional change in biodiversity because of the substantial influence of all drivers of biodiversity change. Northern temperate ecosystems are estimated to experience the least biodiversity change because major land-use change has already occurred. Plausible changes in biodiversity in other biomes depend on interactions among the causes of biodiversity change. These interactions represent one of the largest uncertainties in projections of future biodiversity change.

8,401 citations

Book
26 May 1995
TL;DR: In this article, the authors present a hierarchical dynamic puzzle to understand the relationship between habitat diversity and species diversity and the evolution of the relationships between habitats diversity and diversity in evolutionary time.
Abstract: Preface 1 The road ahead 2 Patterns in space 3 Temporal patterns 4 Dimensionless patterns 5 Speciation 6 Extinction 7 Evolution of the relationship between habitat diversity and species diversity 8 Species-area curves in ecological time 9 Species-area curves in evolutionary time 10 Paleobiological patterns 11 Other patterns with dynamic roots 12 Energy flow and diversity 13 A hierarchical dynamic puzzle References Index

4,812 citations