scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Extinction risk from climate change

TL;DR: Estimates of extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
Abstract: Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of the maximum entropy method (Maxent) for modeling species geographic distributions with presence-only data was introduced, which is a general-purpose machine learning method with a simple and precise mathematical formulation.

13,120 citations


Cites background from "Extinction risk from climate change..."

  • ...This is important for applications such as invasive-species management (e.g.,Peterson and Robins, 2003) and predicting the impact of climate change (e.g.,Thomas et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: This work compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date and found that presence-only data were effective for modelling species' distributions for many species and regions.
Abstract: Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.

7,589 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in species distribution models, and new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales are suggested.
Abstract: In the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.

5,620 citations


Cites background from "Extinction risk from climate change..."

  • ...The application of SDMs to climate change analyses was highlighted by a recent, massive study assessing global species extinction risk (Thomas et al. 2004)....

    [...]

  • ...Second, in most projections, species dispersal is inappropriately taken into consideration, relying either on a no dispersal , an unlimited dispersal scenarios, or both (e.g. Thomas et al. 2004; Thuiller 2004)....

    [...]

Journal ArticleDOI
TL;DR: This paper presents a tuning method that uses presence-only data for parameter tuning, and introduces several concepts that improve the predictive accuracy and running time of Maxent and describes a new logistic output format that gives an estimate of probability of presence.
Abstract: Accurate modeling of geographic distributions of species is crucial to various applications in ecology and conservation. The best performing techniques often require some parameter tuning, which may be prohibitively time-consuming to do separately for each species, or unreliable for small or biased datasets. Additionally, even with the abundance of good quality data, users interested in the application of species models need not have the statistical knowledge required for detailed tuning. In such cases, it is desirable to use "default settings", tuned and validated on diverse datasets. Maxent is a recently introduced modeling technique, achieving high predictive accuracy and enjoying several additional attractive properties. The performance of Maxent is influenced by a moderate number of parameters. The first contribution of this paper is the empirical tuning of these parameters. Since many datasets lack information about species absence, we present a tuning method that uses presence-only data. We evaluate our method on independently collected high-quality presence-absence data. In addition to tuning, we introduce several concepts that improve the predictive accuracy and running time of Maxent. We introduce "hinge features" that model more complex relationships in the training data; we describe a new logistic output format that gives an estimate of probability of presence; finally we explore "background sampling" strategies that cope with sample selection bias and decrease model-building time. Our evaluation, based on a diverse dataset of 226 species from 6 regions, shows: 1) default settings tuned on presence-only data achieve performance which is almost as good as if they had been tuned on the evaluation data itself; 2) hinge features substantially improve model performance; 3) logistic output improves model calibration, so that large differences in output values correspond better to large differences in suitability; 4) "target-group" background sampling can give much better predictive performance than random background sampling; 5) random background sampling results in a dramatic decrease in running time, with no decrease in model performance.

5,314 citations

Journal ArticleDOI
19 Aug 2011-Science
TL;DR: A meta-analysis shows that species are shifting their distributions in response to climate change at an accelerating rate, and that the range shift of each species depends on multiple internal species traits and external drivers of change.
Abstract: The distributions of many terrestrial organisms are currently shifting in latitude or elevation in response to changing climate Using a meta-analysis, we estimated that the distributions of species have recently shifted to higher elevations at a median rate of 110 meters per decade, and to higher latitudes at a median rate of 169 kilometers per decade These rates are approximately two and three times faster than previously reported The distances moved by species are greatest in studies showing the highest levels of warming, with average latitudinal shifts being generally sufficient to track temperature changes However, individual species vary greatly in their rates of change, suggesting that the range shift of each species depends on multiple internal species traits and external drivers of change Rapid average shifts derive from a wide diversity of responses by individual species

3,986 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a dynamic global vegetation model (DGVM) was used to simulate biomass in grassy ecosystems in South Africa with and without fire and the results indicated that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions.
Abstract: The distribution and abundance of trees can be strongly affected by disturbance such as fire. In mixed tree/grass ecosystems, recurrent grass-fuelled fires can strongly suppress tree saplings and therefore control tree dominance. We propose that changes in atmospheric [CO2] could influence tree cover in such metastable ecosystems by altering their postburn recovery rates relative to flammable herbaceous growth forms such as grasses. Slow sapling recovery rates at low [CO2] would favour the spread of grasses and a reduction of tree cover. To test the possible importance of [CO2]/fire interactions, we first used a Dynamic Global Vegetation Model (DGVM) to simulate biomass in grassy ecosystems in South Africa with and without fire. The results indicate that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions. We then used a demographic model of the effects of fire on mesic savanna trees to test the importance of grass/tree differences in postburn recovery rates. We adjusted grass and tree growth in the model according to the DGVM output of net primary production at different [CO2] relative to current conditions. The simulations predicted elimination of trees at [CO2] typical of the last glacial period (180 ppm) because tree growth rate is too slow (15 years) to grow to a fire-proof size of ca. 3 m. Simulated grass growth would produce an adequate fuel load for a burn in only 2 years. Simulations of preindustrial [CO2] (270 ppm) predict occurrence of trees but at low densities. The greatest increase in trees occurs from preindustrial to current [CO2] (360 ppm). The simulations are consistent with palaeo-records which indicate that trees disappeared from sites that are currently savannas in South Africa in the last glacial. Savanna trees reappeared in the Holocene. There has also been a large increase in trees over the last 50–100 years. We suggest that slow tree recovery after fire, rather than differential photosynthetic efficiencies in C3 and C4 plants, might have been the significant factor in the Late Tertiary spread of flammable grasslands under low [CO2] because open, high light environments would have been a prerequisite for the spread of C4 grasses. Our simulations suggest further that low [CO2] could have been a significant factor in the reduction of trees during glacial times, because of their slower regrowth after disturbance, with fire favouring the spread of grasses.

443 citations

Journal ArticleDOI
TL;DR: This article applied a multivariate climate envelope approach and evaluated model performance using the most comprehensive bird data set, finding that 17% of species expanded their ranges, 78% displayed range contraction, 3% showed no response and 2% became locally extinct.
Abstract: The responsiveness of South African fauna to climate change events is poorly documented and not routinely incorporated into regional conservation planning. We model the likely range alterations of a representative suite of 179 animal species to climate change brought about by the doubling of CO2 concentrations. This scenario is expected to cause a mean temperature increase of 2 °C. We applied a multivariate climate envelope approach and evaluated model performance using the most comprehensive bird data set. The results were encouraging, although model performance was inconsistent in the eastern coastal area of the country. The levels of climate change induced impacts on species ranges varied from little impact to local extinction. Some 17% of species expanded their ranges, 78% displayed range contraction (4–98%), 3% showed no response and 2% became locally extinct. The majority of range shifts (41%) were in an easterly direction, reflecting the east–west aridity gradient across the country. Species losses were highest in the west. Substantially smaller westward shifts were present in some eastern species. This may reflect a response to the strong altitudinal gradient in this region, or may be a model artifact. Species range change (composite measure reflecting range contraction and displacement) identified selected species that could act as climate change indicator taxa. Red-data and vulnerable species showed similar responses but were more likely to display range change (58% vs. 43% for all species). Predictions suggest that the flagship, Kruger National Park conservation area may loose up to 66% of the species included in this analysis. This highlights the extent of the predicted range shifts, and indicates why conflicts between conservation and other land uses are likely to escalate under conditions of climate change.

360 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the results of a detailed assessment of the current and future extent of three important factors that threaten biodiversity in the Cape Floristic Region (CFR): cultivation for intensive agriculture, urbanisation, and stands of invasive (self-sown) alien trees and shrubs.

346 citations


"Extinction risk from climate change..." refers background in this paper

  • ...Last, for South African Proteaceae, 27% of all original species are projected to become extinct as a result of land use changes during 2000–2050 (for a pessimistic linear extrapolation of land use scenarios after 2020...

    [...]

Journal ArticleDOI
TL;DR: The size of the existing global breeding bird population is estimated, and a first approximation as to how much this has been modified as a consequence of land–use changes wrought by human activities is made.
Abstract: The magnitude of the impacts of human activities on global biodiversity has been documented at several organizational levels. However, although there have been numerous studies of the effects of local-scale changes in land use (e.g. logging) on the abundance of groups of organisms, broader continental or global-scale analyses addressing the same basic issues remain largely wanting. None the less, changing patterns of land use, associated with the appropriation of increasing proportions of net primary productivity by the human population, seem likely not simply to have reduced the diversity of life, but also to have reduced the carrying capacity of the environment in terms of the numbers of other organisms that it can sustain. Here, we estimate the size of the existing global breeding bird population, and then make a first approximation as to how much this has been modified as a consequence of land-use changes wrought by human activities. Summing numbers across different land-use classes gives a best current estimate of a global population of less than 100 billion breeding bird individuals. Applying the same methodology to estimates of original land-use distributions suggests that conservatively this may represent a loss of between a fifth and a quarter of pre-agricultural bird numbers. This loss is shared across a range of temperate and tropical land-use types.

276 citations


"Extinction risk from climate change..." refers methods in this paper

  • ...We apply the species–area relationship to changes in global land use that have taken place since human land conversion bega...

    [...]

Journal ArticleDOI
TL;DR: Climatic mapping procedures continue to play a vital role in determining what G.E. Hutchinson defined as the “fundamental niche” in studies of potential distribution, especially for pest species, where natural dispersal is generally less important than transport by man, and species interactions are limited by the impoverished species diversity in agroecosystems.

261 citations