scispace - formally typeset
Open accessJournal ArticleDOI: 10.1093/MNRAS/STAB386

Extracting H I astrophysics from interferometric intensity mapping

02 Mar 2021-Monthly Notices of the Royal Astronomical Society (Oxford University Press (OUP))-Vol. 502, Iss: 4, pp 5259-5276
Abstract: We present a new halo model of neutral hydrogen (HI) calibrated to galaxy formation simulations at redshifts $z\sim0.1$ and $z\sim1.0$ that we employ to investigate the constraining power of interferometric HI intensity mapping on HI astrophysics. We demonstrate that constraints on the small-scale HI power spectrum can break the degeneracy between the HI density $\Omega_{\rm HI}$ and the HI bias $b_{\rm HI}$. For $z\sim0.1$, we forecast that an accurate measurement of $\Omega_{\rm HI}$ up to 6% level precision and the large-scale HI bias $b_{\rm HI}^0$ up to 1% level precision can be achieved using Square Kilometre Array (SKA) pathfinder data from MeerKAT and Australian SKA Pathfinder (ASKAP). We also propose a new description of the HI shot noise in the halo model framework in which a scatter of the relation between the HI mass of galaxies and their host halo mass is taken into account. Furthermore, given the number density of HI galaxies above a certain HI mass threshold, future surveys will also be able to constrain the HI mass function using only the HI shot noise. This will lead to constraints at the 10% level using the standard Schechter function. This technique will potentially provide a new way of measuring the HI Mass Function, independent from existing methods. We predict that the SKA will be able to further improve the low-redshift constraints by a factor of 3, as well as pioneering measurements of HI astrophysics at higher redshifts.

... read more

Citations
  More

7 results found


Open accessPosted Content
Tzu-Ching Chang1, Tzu-Ching Chang2, Ue-Li Pen1, Jeffrey B. Peterson3  +1 moreInstitutions (3)
23 Sep 2007-
Abstract: The expansion of the universe appears to be accelerating, and the mysterious anti-gravity agent of this acceleration has been called ``dark energy''. To measure the dynamics of dark energy, Baryon Acoustic Oscillations (BAO) can be used. Previous discussions of the BAO dark energy test have focused on direct measurements of redshifts of as many as $10^9$ individual galaxies, by observing the 21cm line or by detecting optical emission. Here we show how the study of acoustic oscillation in the 21 cm brightness can be accomplished by economical three dimensional intensity mapping. If our estimates gain acceptance they may be the starting point for a new class of dark energy experiments dedicated to large angular scale mapping of the radio sky, shedding light on dark energy.

... read more

Topics: Dark energy (63%), Baryon acoustic oscillations (63%), Intensity mapping (56%) ... read more

181 Citations


Open accessJournal ArticleDOI: 10.1016/J.ASCOM.2021.100487
Abstract: The halo model is a successful framework for describing the distribution of matter in the Universe -- from weak lensing observables to galaxy 2-point correlation functions. We review the basic formulation of the halo model and several of its components in the context of galaxy two-point statistics, developing a coherent framework for its application. We use this framework to motivate the presentation of a new Python tool for simple and efficient calculation of halo model quantities, and their extension to galaxy statistics via a \textit{halo occupation distribution}, called \halomod. This tool is efficient, simple to use, comprehensive and importantly provides a great deal of flexibility in terms of custom extensions. This Python tool is complemented by a new web-application at https://thehalomod.app that supports the generation of many halo model quantities directly from the browser -- useful for educators, students, theorists and observers.

... read more

9 Citations


Open accessPosted Content
09 Jan 2019-
Abstract: The 21~cm intensity mapping experiments promise to measure the baryon acoustic oscillations (BAO) through the mapping of H{\small I} gas at the post-reionization epoch. Its success depends on the assumption that H{\small I} gas traces the matter density distribution {\it linearly} on large scales. However, both nonlinear halo clustering and nonlinear effects modulating H{\small I} gas in halos may spoil this. We employ three approaches to generate the mock H{\small I} density from a large-scale N-body simulation at low redshifts, and demonstrate that the assumption of H{\small I} linearity is valid at the scale corresponding to the first BAO peak, but breaks down at $k \gtrsim 0.1\,h\, {\rm Mpc}^{-1}$. The nonlinear effects of halo clustering and H{\small I} content modulation counteract each other at small scales, and their competition results in a model-dependent "sweet-spot" redshift near $z$=1 where the H{\small I} bias is scale-independent down to small scales. We also find that the linear H{\small I} bias scales approximately linearly with redshift for $z\le 3$.

... read more

Topics: Trace (semiology) (51%)

5 Citations


Open accessJournal ArticleDOI: 10.1088/1475-7516/2021/05/068
Emmanuel Schaan1, Martin White2Institutions (2)
Abstract: Line intensity mapping (LIM) is a rapidly emerging technique for constraining cosmology and galaxy formation using multi-frequency, low angular resolution maps. Many LIM applications crucially rely on cross-correlations of two line intensity maps, or of intensity maps with galaxy surveys or galaxy/CMB lensing. We present a consistent halo model to predict all these cross-correlations and enable joint analyses, in 3D redshift-space and for 2D projected maps. We extend the conditional luminosity function formalism to the multi-line case, to consistently account for correlated scatter between multiple galaxy line luminosities. This allows us to model the scale-dependent decorrelation between two line intensity maps, a key input for foreground rejection and for approaches that estimate auto-spectra from cross-spectra. This also enables LIM cross-correlations to reveal astrophysical properties of the interstellar medium inacessible with LIM auto-spectra. We expose the different sources of luminosity scatter or "line noise" in LIM, and clarify their effects on the 1-halo and galaxy shot noise terms. In particular, we show that the effective number density of halos can in some cases exceed that of galaxies, counterintuitively. Using observational and simulation input, we implement this halo model for the H$\alpha$, [Oiii], Lyman-$\alpha$, CO and [Cii] lines. We encourage observers and simulators to measure galaxy luminosity correlation coefficients for pairs of lines whenever possible. Our code is publicly available at this https URL . In a companion paper, we use this halo model formalism and code to highlight the degeneracies between cosmology and astrophysics in LIM, and to compare the LIM observables to galaxy detection for a number of surveys.

... read more

Topics: Galaxy formation and evolution (56%), Galaxy (55%), Luminosity function (astronomy) (54%) ... read more

3 Citations


Open accessJournal ArticleDOI: 10.1088/1475-7516/2021/05/068
Abstract: Author(s): Schaan, E; White, M | Abstract: Line intensity mapping (LIM) is a rapidly emerging technique for constraining cosmology and galaxy formation using multi-frequency, low angular resolution maps. Many LIM applications crucially rely on cross-correlations of two line intensity maps, or of intensity maps with galaxy surveys or galaxy/CMB lensing. We present a consistent halo model to predict all these cross-correlations and enable joint analyses, in 3D redshift-space and for 2D projected maps. We extend the conditional luminosity function formalism to the multi-line case, to consistently account for correlated scatter between multiple galaxy line luminosities. This allows us to model the scale-dependent decorrelation between two line intensity maps, a key input for foreground rejection and for approaches that estimate auto-spectra from cross-spectra. This also enables LIM cross-correlations to reveal astrophysical properties of the interstellar medium inacessible with LIM auto-spectra. We expose the different sources of luminosity scatter or "line noise"in LIM, and clarify their effects on the 1-halo and galaxy shot noise terms. In particular, we show that the effective number density of halos can in some cases exceed that of galaxies, counterintuitively. Using observational and simulation input, we implement this halo model for the Hα, [Oiii], Lyman-α, CO and [Cii] lines. We encourage observers and simulators to measure galaxy luminosity correlation coefficients for pairs of lines whenever possible. Our code is publicly available at https://github.com/EmmanuelSchaan/HaloGen/tree/LIM. In a companion paper, we use this halo model formalism and code to highlight the degeneracies between cosmology and astrophysics in LIM, and to compare the LIM observables to galaxy detection for a number of surveys.

... read more

Topics: Galaxy formation and evolution (55%), Galaxy (55%), Luminosity function (astronomy) (54%) ... read more

2 Citations


References
  More

131 results found


Journal ArticleDOI: 10.1109/MCSE.2007.55
Abstract: Matplotlib is a 2D graphics package used for Python for application development, interactive scripting,and publication-quality image generation across user interfaces and operating systems

... read more

Topics: 2D computer graphics (56%), Computer graphics (55%), Python (programming language) (54%) ... read more

16,056 Citations


Open accessJournal ArticleDOI: 10.1086/377226
David N. Spergel1, Licia Verde1, Hiranya V. Peiris1, Eiichiro Komatsu1  +16 moreInstitutions (7)
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

... read more

10,236 Citations


Open accessJournal ArticleDOI: 10.1109/MCSE.2011.37
Abstract: In the Python world, NumPy arrays are the standard representation for numerical data and enable efficient implementation of numerical computations in a high-level language. As this effort shows, NumPy performance can be improved through three techniques: vectorizing calculations, avoiding copying data in memory, and minimizing operation counts.

... read more

Topics: NumPy (71%), Python (programming language) (53%)

7,607 Citations


Open accessJournal ArticleDOI: 10.1051/0004-6361/201322068
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

... read more

7,158 Citations


Open accessJournal ArticleDOI: 10.1086/670067
Daniel Foreman-Mackey1, David W. Hogg, Dustin Lang2, Dustin Lang3  +1 moreInstitutions (3)
Abstract: We introduce a stable, well tested Python implementation of the affine-invariant ensemble sampler for Markov chain Monte Carlo (MCMC) proposed by Goodman & Weare (2010). The code is open source and has already been used in several published projects in the astrophysics literature. The algorithm behind emcee has several advantages over traditional MCMC sampling methods and it has excellent performance as measured by the autocorrelation time (or function calls per independent sample). One major advantage of the algorithm is that it requires hand-tuning of only 1 or 2 parameters compared to ~N2 for a traditional algorithm in an N-dimensional parameter space. In this document, we describe the algorithm and the details of our implementation. Exploiting the parallelism of the ensemble method, emcee permits any user to take advantage of multiple CPU cores without extra effort. The code is available online at http://dan.iel.fm/emcee under the GNU General Public License v2.

... read more

Topics: Markov chain Monte Carlo (52%)

6,914 Citations