scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fabrication and In Vitro Evaluation of pH-Sensitive Polymeric Hydrogels as Controlled Release Carriers.

05 Aug 2021-Gels (Multidisciplinary Digital Publishing Institute)-Vol. 7, Iss: 3, pp 110
TL;DR: In this article, the authors developed chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-Co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS).
Abstract: The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.
Citations
More filters
Journal ArticleDOI
09 Jan 2022-Gels
TL;DR: It is concluded that GA crosslinked 5-FU loaded AM and AA based hydrogels would be a potential pH-sensitive oral controlled colon drug delivery carrier.
Abstract: This project aims to synthesize and characterize the pH-sensitive controlled release of 5-fluorouracil (5-FU) loaded hydrogels (5-FULH) by polymerization of acrylamide (AM) and acrylic acid (AA) in the presence of glutaraldehyde (GA) as a crosslinker with ammonium persulphate as an initiator. The formulation's code is named according to acrylamide (A1, A2, A3), acrylic acid (B1, B2, B3) and glutaraldehyde (C1, C2, C3). The optimized formulations were exposed to various physicochemical tests, namely swelling, diffusion, porosity, sol gel analysis, and attenuated total reflection-Fourier transform infrared (ATR-FTIR). These 5-FULH were subjected to kinetic models for drug release data. The 5-FU were shown to be soluble in distilled water and phosphate buffer media at pH 7.4, and sparingly soluble in an acidic media at pH 1.2. The ATR-FTIR data confirmed that the 5-FU have no interaction with other ingredients. The lowest dynamic (0.98 ± 0.04% to 1.90 ± 0.03%; 1.65 ± 0.01% to 6.88 ± 0.03%) and equilibrium swelling (1.85 ± 0.01% to 6.68 ± 0.03%; 10.12 ± 0.02% to 27.89 ± 0.03%) of formulations was observed at pH 1.2, whereas the higher dynamic (4.33 ± 0.04% to 10.21 ± 0.01%) and equilibrium swelling (22.25 ± 0.03% to 55.48 ± 0.04%) was recorded at pH 7.4. These findings clearly indicated that the synthesized 5-FULH have potential swelling characteristics in pH 6.8 that will enhance the drug's release in the same pH medium. The porosity values of formulated 5-FULH range from 34% to 62% with different weight ratios of AM, AA, and GA. The gel fractions data showed variations ranging from 74 ± 0.4% (A1) to 94 ± 0.2% (B3). However, formulation A1 reported the highest 24 ± 0.1% and B3 the lowest 09 ± 0.3% sol fractions rate among the formulations. Around 20% drug release from the 5-FULH was found at 1 h in an acidic media (pH1.2), whereas >65% of drug release (pH7.4) was observed at around 25 h. These findings concluded that GA crosslinked 5-FU loaded AM and AA based hydrogels would be a potential pH-sensitive oral controlled colon drug delivery carrier.

13 citations

Journal ArticleDOI
01 Aug 2022-Polymers
TL;DR: Kaempferol-loaded carbopol polymer (acrylic acid) hydrogel and its preparations had high antioxidant activity and showed greater swelling and drug release at higher pH values.
Abstract: The purpose of this study was to prepare and evaluate kaempferol-loaded carbopol polymer (acrylic acid) hydrogel, investigate its antioxidant activity in vitro, and compare the effects on drug release under different pH conditions. Drug release studies were conducted in three different pH media (pH 3.4, 5.4, and 7.4). The kaempferol-loaded hydrogel was prepared by using carbopol 934 as the hydrogel matrix. The morphology and viscosity of the preparation were tested to understand the fluidity of the hydrogel. The antioxidant activity of the preparation was studied by scavenging hydrogen peroxide and 2,2-diphenyl-1-picrilhidrazil (DPPH) radicals in vitro and inhibiting the production of malondialdehyde in mouse tissues. The results showed that kaempferol and its preparations had high antioxidant activity. In vitro release studies showed that the drug release at pH 3.4, 5.4, and 7.4 was 27.32 ± 3.49%, 70.89 ± 8.91%, and 87.9 ± 10.13%, respectively. Kaempferol-loaded carbopol hydrogel displayed greater swelling and drug release at higher pH values (pH 7.4).

8 citations

Journal ArticleDOI
08 Nov 2021-Gels
TL;DR: In this article, a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs.
Abstract: Over the past several decades, the development of engineered small particles as targeted and drug delivery systems (TDDS) has received great attention thanks to the possibility to overcome the limitations of classical cancer chemotherapy, including targeting incapability, nonspecific action and, consequently, systemic toxicity. Thus, this research aims at using a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs. Smart NIPAM-based microgels were functionalized with acrylic acid and coupled to folic acid (FA), targeting the folate receptors overexpressed by cancer cells and to the chemotherapeutic drug doxorubicin (Dox). The successful conjugation of FA and Dox was demonstrated by dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), UV-VIS analysis, and differential scanning calorimetry (DSC). Furthermore, viability assay performed on cancer and healthy breast cells, suggested the microgels’ biocompatibility and the cytotoxic effect of the conjugated drug. On the other hand, the specific tumor targeting of synthetized microgels was demonstrated by a co-cultured (healthy and cancer cells) assay monitored using confocal microscopy and flow cytometry. Results suggest successful targeting of cancer cells and drug release. These data support the use of pNIPAM-based microgels as good candidates as TDDS.

6 citations

Journal ArticleDOI
14 Oct 2021-Polymers
TL;DR: In this paper, a free radical polymerization technique using glutamic acid (GA) as a polymer, acrylic acid (AAc) as monomer, ethylene glycol dimethylacrylate (EGDMA) as cross-linker, and ammonium persulfate (APS) as an initiator was used.
Abstract: Glutamic acid-co-poly(acrylic acid) (GAcPAAc) hydrogels were prepared by the free radical polymerization technique using glutamic acid (GA) as a polymer, acrylic acid (AAc) as a monomer, ethylene glycol dimethylacrylate (EGDMA) as a cross-linker, and ammonium persulfate (APS) as an initiator. Increase in gel fraction was observed with the increasing concentration of glutamic acid, acrylic acid, and ethylene glycol dimethylacrylate. High percent porosity was indicated by developed hydrogels with the increase in the concentration of glutamic acid and acrylic acid, while a decrease was seen with the increasing concentration of EGDMA, respectively. Maximum swelling and drug release was exhibited at high pH 7.4 compared to low pH 1.2 by the newly synthesized hydrogels. Similarly, both swelling and drug release increased with the increasing concentration of glutamic acid and acrylic acid and decreased with the increase in ethylene glycol dimethylacrylate concentration. The drug release was considered as non-Fickian transport and partially controlled by viscoelastic relaxation of hydrogel. In-vivo study revealed that the AUC0–∞ of fabricated hydrogels significantly increased compared to the drug solution and commercial product Keten. Hence, the results indicated that the developed hydrogels could be used as a suitable carrier for controlled drug delivery.

3 citations

Journal ArticleDOI
01 Jan 2023-Polymers
TL;DR: In this article , a pH-responsive polymeric system for the targeted drug delivery of Diloxanide furoate was created using an aqueous free radical polymerization method, SCH1-SCH12 was created with varying polymer, MAA and MBA input ratios.
Abstract: This research was carried out to create a pH-responsive polymeric system for the targeted drug delivery of Diloxanide furoate. It relied on sodium alginate (Na-Alg) and Carbopol 934P as building blocks. Using an aqueous free radical polymerization method, SCH1-SCH12 was created with varying polymer, MAA, and MBA input ratios. Positive outcomes were seen in the swelling and release profiles at higher pH levels. Hydrogel formation, as well as component compatibility, thermal stability, and Diloxanide furoate loading, were all validated by instrumental characterization. A drug loading percentage of 83.56% was determined, with the swelling reaching 743.19%. For the formulation with MBA, the gel fraction was 94.58%. The release of diloxanide furoate increased to 91.77% at neutral pH. The formulation containing Carbopol 934P provided the highest mucoadhesion force (3993.42 dynes/cm2). The created hydrogel has been shown to be biocompatible by toxicological testing of the network. Based on the findings, the created polymeric nexus proved promising for pH-dependent localized and regulated delivery of Diloxanide furoate.

2 citations

References
More filters
Journal ArticleDOI
TL;DR: This work highlights recent developments in engineering uncrosslinked and crosslinked hydrophilic polymers for biomedical and biological applications and shows how such systems' intelligent behavior can be used in sensors, microarrays, and imaging.
Abstract: Hydrophilic polymers are the center of research emphasis in nanotechnology because of their perceived “intelligence”. They can be used as thin films, scaffolds, or nanoparticles in a wide range of biomedical and biological applications. Here we highlight recent developments in engineering uncrosslinked and crosslinked hydrophilic polymers for these applications. Natural, biohybrid, and synthetic hydrophilic polymers and hydrogels are analyzed and their thermodynamic responses are discussed. In addition, examples of the use of hydrogels for various therapeutic applications are given. We show how such systems’ intelligent behavior can be used in sensors, microarrays, and imaging. Finally, we outline challenges for the future in integrating hydrogels into biomedical applications.

3,524 citations

Journal ArticleDOI
15 Apr 2008-Polymer
TL;DR: Recent progress in overcoming challenges with regards to effectively delivering hydrogels inside the body without implantation, prolonging the release kinetics of drugs fromhydrogels, and expanding the nature of drugs which can be delivered using hydrogel-based approaches is discussed.

3,140 citations

Journal ArticleDOI
TL;DR: The newest developments in chitosan hydrogel preparation are investigated and the design parameters in the development of physically and chemically cross-linked hydrogels are defined.

2,034 citations

Journal ArticleDOI
TL;DR: Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system with a nanoparticle, each with its own advantages and drawbacks.

1,704 citations

Journal ArticleDOI
TL;DR: In this overview, different chemical and physical crosslinking methods used for the design of biodegradable hydrogels are summarized and discussed.

1,674 citations