scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fabrication of bioactive 3D printed porous titanium implants with Sr ion-incorporated zeolite coatings for bone ingrowth.

23 May 2018-Journal of Materials Chemistry B (The Royal Society of Chemistry)-Vol. 6, Iss: 20, pp 3254-3261
TL;DR: In vivo evaluation on a rabbit model with 3D printed titanium implants shows that the SZCs could significantly induce new bone formation within four weeks, which may open up a new method for the development of bioactive customized porous implants by functionalization with zeolite coatings for orthopedic applications.
Abstract: Functionalization of porous titanium alloy implants with bioactive coatings to improve bone regeneration performance is hotly pursued in recent decade. Here we demonstrate a facile strategy to design bioactive 3D printed porous titanium implants with strontium (Sr) ion incorporated zeolite coatings (SZCs). The SZCs can be uniformly fabricated on the 3D porous scaffolds using an in situ hydrothermal crystal growth method to improve their osteogenesis and osteointegration capacity. In vitro experiments of SZCs on a TC4 disk show that Sr ions can slowly release in the simulated body fluid by means of ion-exchange, thus can drastically improve apatite forming ability, biocompatibility, corrosion resistance, and alkaline phosphatase (ALP) activity. In vivo evaluation on a rabbit model with 3D printed titanium implants shows that the SZCs could significantly induce new bone formation both in and around the porous implants within four weeks. This work may open up a new method for the development of bioactive customized porous implants by functionalization with zeolite coatings for orthopedic applications.
Citations
More filters
Journal ArticleDOI
01 Apr 2021-Nature
TL;DR: The electrochemical performance, flexibility and stability of zeolite-based Li-air batteries confer practical applicability that could extend to other energy-storage systems, such as Li-ion, Na-air and Na-ion batteries.
Abstract: Solid-state lithium (Li)–air batteries are recognized as a next-generation solution for energy storage to address the safety and electrochemical stability issues that are encountered in liquid battery systems1–4. However, conventional solid electrolytes are unsuitable for use in solid-state Li–air systems owing to their instability towards lithium metal and/or air, as well as the difficulty in constructing low-resistance interfaces5. Here we present an integrated solid-state Li–air battery that contains an ultrathin, high-ion-conductive lithium-ion-exchanged zeolite X (LiX) membrane as the sole solid electrolyte. This electrolyte is integrated with cast lithium as the anode and carbon nanotubes as the cathode using an in situ assembly strategy. Owing to the intrinsic chemical stability of the zeolite, degeneration of the electrolyte from the effects of lithium or air is effectively suppressed. The battery has a capacity of 12,020 milliamp hours per gram of carbon nanotubes, and has a cycle life of 149 cycles at a current density of 500 milliamps per gram and at a capacity of 1,000 milliamp hours per gram. This cycle life is greater than those of batteries based on lithium aluminium germanium phosphate (12 cycles) and organic electrolytes (102 cycles) under the same conditions. The electrochemical performance, flexibility and stability of zeolite-based Li–air batteries confer practical applicability that could extend to other energy-storage systems, such as Li–ion, Na–air and Na–ion batteries. Flexible, stable and energy-dense solid-state Li–air batteries are realised using ultrathin, chemically inert ion-conductive zeolite membranes as a solid electrolyte.

225 citations

Journal ArticleDOI
TL;DR: The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Brønsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry.
Abstract: C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2 , CH4 , CH3 OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Bronsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.

150 citations

Journal ArticleDOI
TL;DR: In vitro biological test showed that the 3DP scaffold had low cytotoxicity and it was beneficial to MC3T3 cell adhesion and proliferation, and 3D printed calcium phosphate scaffolds with controlled-release antibacterial properties is a promising biomaterials for jaw repair.

67 citations

Journal ArticleDOI
TL;DR: The dynamic adsorption breakthrough tests demonstrate the superiority of ZM‐BF over commercial benchmark zeolites for flue gas purification and natural gas and biogas upgrading, and a facile strategy for designing and fabricating high‐performance hierarchically structured zeolite adsorbents and even catalysts for practical applications.
Abstract: 3D-printing technology is a promising approach for rapidly and precisely manufacturing zeolite adsorbents with desirable configurations. However, the trade-off among mechanical stability, adsorption capacity, and diffusion kinetics remains an elusive challenge for the practical application of 3D-printed zeolites. Herein, a facile "3D printing and zeolite soldering" strategy is developed to construct mechanically robust binder-free zeolite monoliths (ZM-BF) with hierarchical structures, which can act as a superior configuration for CO2 capture. Halloysite nanotubes are employed as printing ink additives, which serve as both reinforcing materials and precursor materials for integrating ZM-BF by ultrastrong interfacial "zeolite-bonds" subjected to hydrothermal treatment. ZM-BF exhibits outstanding mechanical properties with robust compressive strength up to 5.24 MPa, higher than most of the reported structured zeolites with binders. The equilibrium CO2 uptake of ZM-BF reaches up to 5.58 mmol g-1 (298 K, 1 bar), which is the highest among all reported 3D-printed CO2 adsorbents. Strikingly, the dynamic adsorption breakthrough tests demonstrate the superiority of ZM-BF over commercial benchmark zeolites for flue gas purification and natural gas and biogas upgrading. This work introduces a facile strategy for designing and fabricating high-performance hierarchically structured zeolite adsorbents and even catalysts for practical applications.

63 citations

Journal ArticleDOI
Farnaz Ghorbani1, Dejian Li1, Shuo Ni1, Ying Zhou1, Baoqing Yu1 
TL;DR: Current advances in acellular 3D printed scaffolds, proper microporous structure and geometry for bone repair, and suitable materials for 3D printing the regenerative bone substitutes are explained.
Abstract: Bone injuries can be treated using tissue engineering scaffolds, but the conventional constructs have a big challenge in supplying requirements of native tissue, i.e., bioactivity potential, mechanical stability, controllable biodegradability, and proper cellular interaction. In this regard, 3D printing technology with the possibility of controlling the internal microstructure and geometry of synthesized matrixes was introduced as a promising approach for bone defect regeneration. Although a variety of novel materials, which have shown initial potential for bone repair, can be used for preparing the biocompatible matrixes, the 3D printer type and selecting an innovated technology depend on the properties of applied biomaterials. In all the used methods, tunable, controllable, and interconnected porous microstructure can be fabricated even though identification of suitable porosity and microstructure, which can supply required mechanical properties of natural bone and support cellular adhesion, proliferation, and differentiation, need to evaluate. Therefore, this mini-review explains current advances in acellular 3D printed scaffolds, proper microporous structure and geometry for bone repair, and suitable materials for 3D printing the regenerative bone substitutes. Herein, the novel and recent studies were focused and probable limitations, and existing strategies were discussed.

53 citations

References
More filters
Journal ArticleDOI
TL;DR: Examination of apatite formation on a material in SBF is useful for predicting the in vivo bone bioactivity of a material, and the number of animals used in and the duration of animal experiments can be reduced remarkably by using this method.

7,459 citations

Journal ArticleDOI
TL;DR: The state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys are reviewed.

1,393 citations

Journal ArticleDOI
TL;DR: Self-assembled monolayers of alkanethiols, which can provide flat and chemically well-defined surfaces, were employed as model surfaces to understand cellular interaction with artificial materials and suggest that cell adhesion is mainly determined by surface wettability, but is also affected by the surface functional group, its surface density, and the kinds of cells.

1,307 citations

Journal ArticleDOI
TL;DR: Over the years, a variety of fabrication processes have been developed, resulting in porous implant substrates that can address unresolved clinical problems, and all known methods for fabricating such porous metallic scaffolds are summarized.

1,292 citations

Journal ArticleDOI
TL;DR: A fluorescent derivative of phalloidin has been synthesized possessing high affinity to filamentous actin, used for visualization of actin-containing structures in eukaryotic nonmuscle cells.
Abstract: A fluorescent derivative of phalloidin has been synthesized possessing high affinity to filamentous actin. This compound was used for visualization of actin-containing structures in eukaryotic nonmuscle cells. Due to its low molecular weight (1250), fixation for formaldehyde was sufficient to render the membrane permeable for the labeled peptide. Bundles of microfilaments are the predominant pattern in the flat rat kangaroo PtK1 cells, whereas a net of concentric fibers characterizes the more spherical bovine kidney MDBK cells. Specificity of staining was confirmed by competition experiments with unlabeled phalloidin.

765 citations