scispace - formally typeset
Journal ArticleDOI

Fabrication of Microsensor for Detection of Low-Concentration Formaldehyde Gas in Formalin-Treated Fish

01 Dec 2020-IEEE Transactions on Electron Devices (Institute of Electrical and Electronics Engineers (IEEE))-Vol. 67, Iss: 12, pp 5710-5716
Abstract: Here, an ultrafast direct laser patterning technique to fabricate a low-cost microsensor and its application for formaldehyde detection are reported. The patterns of microheater and interdigitated electrodes (IDEs) were realized using laser micromachining techniques by ablation of gold thin film on alumina substrate. The thin film of gold microheater showed good stability up to 300 °C with a fast response time of 80 s and temperature coefficient of resistance (TCR) was calculated as $1.37\times 10^{-{3}}/^{\circ }\text{C}$ . Moreover, gold microheater exhibited long-term reliability under self-heating mode with a negligible resistance drift $^{-{1}}$ ) to formaldehyde even to detect sub-ppm concentrations with fast response (32 s) and recovery kinetics (72 s). Moreover, the microsensor was also used on-site rapid screening for the detection and quantification of formaldehyde concentration in formalin-treated fish sample.

...read more

Topics: Microheater (54%)
Citations
More filters

Journal ArticleDOI
Chengming Lou1, Chen Yang1, Wei Zheng1, Xianghong Liu1  +3 moreInstitutions (2)
Abstract: Heterostructures of metal oxide semiconductors have a great promise for chemical gas sensors due to the peculiar properties at the heterointerface. In this work, a highly sensitive and selective gas sensor for detecting formaldehyde is reported based on SnO2/ZnO heterospheres designed by atomic layer deposition (ALD). The electronic properties at the SnO2/ZnO heterointerface can be modulated by optimizing the loading of ZnO through changing ALD cycles. Gas sensing tests indicate that the ZnO ALD significantly improved the sensor properties including higher responses, faster response-recovery dynamics and better selectivity. The response of the SnO2/ZnO sensor to 1 ppm formaldehyde (Ra/Rg = 9.7) shows 4 times enhancement compared to pristine SnO2 at a working temperature of 200 °C. ZnO ALD of 10 cycles leads to the best response and recovery dynamics (12 and 24 s), and that of 15 ALD cycles results in the highest response (Ra/Rg = 38.2) to 20 ppm formaldehyde. The SnO2/ZnO sensor also registers a low detection limit of 70 ppb, which allows for reliable detection of sub-ppm formaldehyde. The remarkable sensor performances indicate the ALD surface engineering is promising for the design of new materials for reliable detection of harmful molecules.

...read more

23 citations


Journal ArticleDOI
Chengming Lou1, Qianxiong Huang1, Zishuo Li1, Guanglu Lei1  +3 moreInstitutions (2)
Abstract: Metal oxide semiconductor (MOS) nanostructures have been widely explored for formaldehyde sensors. The low surface chemical and electronic properties of pure MOS, however, greatly limits the sensor functions. In this work, Fe2O3-sensitized SnO2 nanosheets are designed via atomic layer deposition (ALD) to realize high performance formaldehyde detection. By varying the ALD cycles, the influence of different Fe2O3 loading on the sensing performance of SnO2 nanosheets is revealed. It is found that Fe2O3 ALD can greatly boost the sensing performance and the SnO2 nanosheets with 20 Fe2O3 ALD cycles exhibits the best response (Ra/Rg = 4.5) and fast response and recovery dynamics (9 and 34 s) to 20 ppm formaldehyde at a relative low temperature of 220 °C. The sensor based on SnO2/Fe2O3 also displays good selectivity to formaldehyde as well as the reliable stability and low limit of detection (LOD). This work will shed some light to design efficient MOS heterostructures for detection of formaldehyde.

...read more

4 citations


Journal ArticleDOI
02 Sep 2021-Micromachines
Abstract: In this paper, the development of a copper–chrome-based glass microheater and its integration into a Polymethylmethacrylate (PMMA) microfluidic system are presented. The process highlights the importance of an appropriate characterization, taking advantage of computer-simulated physical methods in the heat transfer process. The presented system architecture allows the integration for the development of a thermal flow sensor, in which the fluid flows through a 1 mm width × 1 mm length microchannel across a 5 mm width × 13 mm length heating surface. Using an electrothermal analysis, based on a simulation and design process, the surface heating behavior curve was analyzed to choose a heating reference point, primarily used to control the temperature point within the fluidic microsystem. The heater was characterized using the theory of electrical instrumentation, with a 7.22% error for the heating characterization and a 5.42% error for the power consumption, measured at 0.69 W at a temperature of 70 °C. Further tests, at a temperature of 115 °C, were used to observe the effects of the heat transfer through convection on the fluid and the heater surface for different flow rates, which can be used for the development of thermal flowmeters using the configuration presented in this work.

...read more


References
More filters

Journal ArticleDOI
Nicolae Barsan1, Udo Weimar1Institutions (1)
Abstract: Tin dioxide is a widely used sensitive material for gas sensors. Many research and development groups in academia and industry are contributing to the increase of (basic) knowledge/(applied) know-how. However, from a systematic point of view the knowledge gaining process seems not to be coherent. One reason is the lack of a general applicable model which combines the basic principles with measurable sensor parameters. The approach in the presented work is to provide a frame model that deals with all contributions involved in conduction within a real world sensor. For doing so, one starts with identifying the different building blocks of a sensor. Afterwards their main inputs are analyzed in combination with the gas reaction involved in sensing. At the end, the contributions are summarized together with their interactions. The work presented here is one step towards a general applicable model for real world gas sensors.

...read more

1,999 citations


"Fabrication of Microsensor for Dete..." refers background in this paper

  • ...When SnO2 sensor is exposed to atmospheric air, at different temperatures, oxygen molecules could be adsorbed on SnO2 surface by trapping electrons from its conduction band to form various types of chemisorbed oxygen ions, resulting in a resistance increase of sensing layer [34], [35]....

    [...]


Journal ArticleDOI
Ghenadii Korotcenkov1Institutions (1)
Abstract: The analysis of various parameters of metal oxides and the search of criteria, which could be used during material selection for solid-state gas sensor applications, were the main objectives of this review. For these purposes the correlation between electro-physical (band gap, electroconductivity, type of conductivity, oxygen diffusion), thermodynamic, surface, electronic, structural properties, catalytic activity and gas-sensing characteristics of metal oxides designed for solid-state sensors was established. It has been discussed the role of metal oxide manufacturability, chemical activity, and parameter's stability in sensing material choice as well.

...read more

1,181 citations


"Fabrication of Microsensor for Dete..." refers background in this paper

  • ...When SnO2 sensor is exposed to atmospheric air, at different temperatures, oxygen molecules could be adsorbed on SnO2 surface by trapping electrons from its conduction band to form various types of chemisorbed oxygen ions, resulting in a resistance increase of sensing layer [34], [35]....

    [...]


Journal ArticleDOI
14 Apr 2010-Chemical Reviews
TL;DR: Adverse health effects from exposure to formaldehyde in prefabricated houses, especially irritation of the eyes and upper airways, were first reported in the mid-1960s and a guideline value of 0.1 ppm was proposed in 1977 by the former German Federal Agency of Health to limit human exposure in dwellings.

...read more

Abstract: 1.1. History Formaldehyde was described in the year 1855 by the Russian scientist Alexander Michailowitsch Butlerow. The technical synthesis by dehydration of methanol was achieved in 1867 by the German chemist August Wilhelm von Hofmann. The versatility that makes it suitable for use in various industrial applications was soon discovered, and the compound was one of the first to be indexed by Chemical Abstracts Service (CAS). In 1944, Walker published the first edition of his classic work Formaldehyde.(1) Between 1900 and 1930, formaldehyde-based resins became important adhesives for wood and wood composites. The first commercial particle board was produced during World War II in Bremen, Germany. Since 1950, particle board has become an attractive alternative to solid wood for the manufacturing of furniture. Particle board and other wood-based panels were subsequently also used for the construction of housing. Adverse health effects from exposure to formaldehyde in prefabricated houses, especially irritation of the eyes and upper airways, were first reported in the mid-1960s. Formaldehyde emissions from particle boards bonded with urea formaldehyde resin were soon identified as the cause of the complaints. As a consequence, a guideline value of 0.1 ppm was proposed in 1977 by the former German Federal Agency of Health to limit human exposure in dwellings. Criteria for the limitation and regulation of formaldehyde emissions from wood-based materials were established in 1981 in Germany and Denmark. The first regulations followed in the United States in 1985 or thereabouts. In Germany and the United States, large-scale test chambers were used for the evaluation of emissions. Although the chamber method is very reliable, it is also time-consuming and expensive. This meant there was a strong demand for simple laboratory test methods.(2)

...read more

968 citations


"Fabrication of Microsensor for Dete..." refers background in this paper

  • ...FORMALDEHYDE is one of the most important indoor pollutants, which is produced either by thermal or chemical decomposition of many day-to-day used articles [1]–[3]....

    [...]


Journal ArticleDOI
X. Liu1, D. Du1, Gerard Mourou1Institutions (1)
Abstract: The mechanisms of ultrashort-pulse laser ablation of materials are discussed, and the differences to that of long laser pulses are emphasized. Ultrashort laser pulses offer both high laser intensity and precise laser-induced breakdown threshold with reduced laser fluence. The ablation of materials with ultrashort pulses has a very limited heat-affected volume. The advantages of ultrashort laser pulses are applied in precision micromachining of various materials. Some femtosecond laser pulse micromachining results, including comparison with long pulses, are presented. Ultrashort-pulse laser micromachining may have a wide range of applications where micrometer and submicrometer feature sizes are required.

...read more

922 citations


"Fabrication of Microsensor for Dete..." refers background in this paper

  • ...heaters and microsensors on alumina and flexible substrates [20]–[22]....

    [...]


Journal ArticleDOI
Xiao Liu1, Sitian Cheng, Hong Liu1, Sha Hu  +2 moreInstitutions (2)
16 Jul 2012-Sensors
TL;DR: This paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.

...read more

Abstract: Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.

...read more

883 citations


"Fabrication of Microsensor for Dete..." refers background in this paper

  • ...For the detection of formaldehyde, mostly metal oxide semiconductor-based chemiresistive-type gas sensors are being used because of their cost-effectiveness, high miniaturization potential, real-time detection, and ease in handling [11]–[13]....

    [...]