scispace - formally typeset
Open AccessJournal ArticleDOI

Fabrication of N-doped Graphene–Carbon Nanotube Hybrids from Prussian Blue for Lithium–Sulfur Batteries

Reads0
Chats0
TLDR
In this article, a pyrolysis process was used to convert Prussian blue (dehydrated sodium ferrocyanide) to N-doped graphene-carbon nanotubes hybrid materials for high performance lithium-sulfur batteries.
Abstract
Hybrid nanostructures containing 1D carbon nanotubes and 2D graphene sheets have many promising applications due to their unique physical and chemical properties. In this study, the authors find Prussian blue (dehydrated sodium ferrocyanide) can be converted to N-doped graphene–carbon nanotube hybrid materials through a simple one-step pyrolysis process. Through field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectra, atomic force microscopy, and isothermal analyses, the authors identify that 2D graphene and 1D carbon nanotubes are bonded seamlessly during the growth stage. When used as the sulfur scaffold for lithium–sulfur batteries, it demonstrates outstanding electrochemical performance, including a high reversible capacity (1221 mA h g−1 at 0.2 C rate), excellent rate capability (458 and 220 mA h g−1 at 5 and 10 C rates, respectively), and excellent cycling stability (321 and 164 mA h g−1 at 5 and 10 C (1 C = 1673 mA g−1) after 1000 cycles). The enhancement of electrochemical performance can be attributed to the 3D architecture of the hybrid material, in which, additionally, the nitrogen doping generates defects and active sites for improved interfacial adsorption. Furthermore, the nitrogen doping enables the effective trapping of lithium polysulfides on electroactive sites within the cathode, leading to a much-improved cycling performance. Therefore, the hybrid material functions as a redox shuttle to catenate and bind polysulfides, and convert them to insoluble lithium sulfide during reduction. The strategy reported in this paper could open a new avenue for low cost synthesis of N-doped graphene–carbon nanotube hybrid materials for high performance lithium–sulfur batteries.

read more

Content maybe subject to copyright    Report

"This is the peer reviewed version of the following article: [Advanced Energy Materials, 2017, 7 (8)],
which has been published in final form at [http://dx.doi.org/10.1002/aenm.201602014]. This article
may be used for non-commercial purposes in accordance with
Wiley Terms and Conditions for Self-
Archiving
."

1
D O I : 1 0 . 1 0 0 2 / ( ( p l e a s e a d d m a n u s c r i p t n u m b e r ) )
A r t i c l e t y p e : F u l l P a p e r
F a b r i c a t i o n o f N - d o p e d g r a p h e n e - c a r b o n n a n o t u b e h y b r i d s f r o m P r u s s i a n b l u e f o r L i t h i u m -
s u l f u r B a t t e r i e s
D a w e i S u ,
M i c h a e l C o r t i e ,
a n d G u o x i u W a n g
*
D r . D a w e i S u , P r o f . G u o x i u W a n g
C e n t r e f o r C l e a n E n e r g y T e c h n o l o g y , F a c u l t y o f S c i e n c e , U n i v e r s i t y o f T e c h n o l o g y S y d n e y , N S W
2 0 0 7 , A u s t r a l i a .
P r o f . M i c h a e l C o r t i e
I n s t i t u t e f o r N a n o s c a l e T e c h n o l o g y , F a c u l t y o f S c i e n c e , U n i v e r s i t y o f T e c h n o l o g y S y d n e y , N S W
2 0 0 7 , A u s t r a l i a .
E - m a i l : G u o x i u . W a n g @ u t s . e d u . a u
A B S T R A C T : H y b r i d n a n o - s t r u c t u r e s c o n t a i n i n g o n e - d i m e n s i o n a l ( 1 D ) c a r b o n n a n o t u b e s a n d t w o -
d i m e n s i o n a l ( 2 D ) g r a p h e n e s h e e t s h a v e m a n y p r o m i s i n g a p p l i c a t i o n s d u e t o t h e i r u n i q u e p h y s i c a l
a n d c h e m i c a l p r o p e r t i e s . H e r e i n , w e f o u n d P r u s s i a n b l u e ( d e h y d r a t e d s o d i u m f e r r o c y a n i d e ) c a n b e
c o n v e r t e d t o N - d o p e d g r a p h e n e - c a r b o n n a n o t u b e h y b r i d m a t e r i a l s t h r o u g h a s i m p l e o n e - s t e p p y r o l y -
s i s p r o c e s s . T h r o u g h F E S E M , T E M , X R D , R a m a n s p e c t r a , A F M , a n d i s o t h e r m a l a n a l y s e s , w e i d e n -
t i f i e d t h a t 2 D g r a p h e n e a n d 1 D c a r b o n n a n o t u b e s w e r e b o n d e d s e a m l e s s l y d u r i n g t h e g r o w t h s t a g e .
W h e n u s e d a s t h e s u l f u r s c a f f o l d f o r l i t h i u m - s u l f u r b a t t e r i e s , i t d e m o n s t r a t e d o u t s t a n d i n g e l e c t r o -
c h e m i c a l p e r f o r m a n c e , i n c l u d i n g a h i g h r e v e r s i b l e c a p a c i t y ( 1 2 2 1 m A h g
- 1
a t 0 . 2 C r a t e ) , e x c e l l e n t
r a t e c a p a b i l it y ( 4 5 8 a n d 2 2 0 m A h g
- 1
a t 5 C a n d 1 0 C r a t e s , r e s p e c t i v e l y ) , a n d e x c e l l e n t c y c l i n g s t a -
b i l i t y ( 3 2 1 a n d 1 6 4 m A h g
- 1
a t 5 a n d 1 0 C ( 1 C = 1 6 7 3 m A g
- 1
) a f t e r 1 0 0 0 c y c l e s ) . T h e e n h a n c e m e n t
o f e l e c t r o c h e m i c a l p e r f o r m a n c e c a n b e a t t r i b u t e d t o t h e t h r e e - d i m e n s i o n a l a r c h i t e c t u r e o f t h e h y b r i d
m a t e r i a l , i n w h i c h , a d d i t i o n a l l y , t h e n i t r o g e n d o p i n g g e n e r a t e s d e f e c t s a n d a c t i v e s i t e s f o r i m p r o v e d
i n t e r f a c i a l a d s o r p t i o n . F u r t h e r m o r e , t h e n i tr o g e n d o p i n g e n a b l e s t h e e f f e c t i v e t r a p p i n g o f l i t h i u m

2
p o l y s u l f i d e s o n e l e c t r o a c t i v e s i t e s w i t h i n t h e c a t h o d e , l e a d i n g t o a m u c h i m p r o v e d c y c l i n g p e r f o r -
m a n c e . T h e r e f o r e , t h e h y b r i d m a t e r i a l f u n c t i o n s a s a r e d o x s h u t tl e t o c a t e n a t e a n d b i n d p o l y s u l f i d e s ,
a n d c o n v e r t t h e m t o i n s o l u b l e l i t h i u m s u l f i d e d u r i n g r e d u c t i o n . T h e s t r a t e g y r e p o r t e d i n t h i s p a p e r
c o u l d o p e n a n e w a v e n u e f o r l o w c o s t s y n t h e s i s o f N - d o p e d g r a p h e n e - c a r b o n n a n o t u b e h y b r i d m a -
t e r i a l s f o r h i g h p e r f o r m a n c e l i t h i u m - s u l f u r b a t t e r i e s .
Key w o r d s : O n e s t e p s y n t h e s i s , n i t r o g e n - d o p e d g r a p h e n e - c a r b o n n a n o t u b e h y b r i d m a t e r i a l s , l i t h i -
um - s u l p h u r b a t t e r i e s
I n t r o d u c t i o n
B e c a u s e o f t h e h i g h t h e o r e t i c a l c a p a c i t y ( 1 6 7 3 m A h g
- 1
) a n d e n e r g y d e n s i t y ( 2 6 0 0 W h k g
- 1
) o f
s u l f u r , l i t h i u m - s u l f u r ( Li- S ) b a t t e r i e s c a n , i n p r i n c i p l e , b o o s t c a p a c i t y f i v e - f o l d o v e r t h e c u r r e n t l it h i -
um - i o n b a t te r i e s . F u r t h e r m o r e , s u l f u r i s a n a t u r a l l y a b u n d a n t e l e m e n t ( a r o u n d 3 % o f t h e E a r t h s
m a s s ) , h a s a l o w c o s t , a n d i s e n v i r o n m e n t a l l y b e n i g n . T h e r e f o r e , i n c r e a s i n g n u m b e r o f t h e r e s e a r c h
g r o u p s f o c u s o n t h e L i - S b a t t e r i e s . H o w e v e r , p r a c t i c a l a p p l i c a t i o n s o f L i - S b a t t e r i e s a r e c u r r e n t l y
h i n d e r e d b y s e v e r a l o b s t a c l e s . S u l f u r i s a n i n s u l a t o r , w h i c h c a u s e s p o o r e l e c t r o c h e m i c a l c o n t a c t
w i t h i n t h e e l e c t r o d e m a t e r i a l . T h e i n t e r m e d i a t e p o l y s u l f i d e p r o d u c t s c a n b e d i s s o l v e d i n t h e e l e c t r o -
l y t e , a n d t h e y c a n s h u t t le b e t w e e n t h e a n o d e a n d c a t h o d e . T h i s c a u s e s t h e s o - c a l l e d s h u t t l i n g e f f e c t
w h i c h i s a s s o c i a t e d w i t h a n i r r e v e r s i b l e l o s s o f s u l f u r , r e s u l t i n g i n l o w C o u l o m b i c e f f i c i e n c y , l o w
c y c l i n g c a p a c i t y , a n d a n i n c r e a s e i n i n t e r n a l r e s i s t a n c e . F u r t h e r m o r e , t h e f i n a l i n s o l u b l e p r o d u c t L i
2
S
a l w a y s i n d u c e s l a r g e v o l u m e e x p a n s i o n d u e t o t h e d i f f e r e n c e s i n d e n s i t i e s o f L i
2
S ( 1 . 6 6 g c m
- 3
) a n d
s u l f u r ( 2 . 0 3 g c m
- 3
) , l e a d i n g t o a r a p i d c a p a c i t y d e c a y .
[ 1 ]
S o f a r , m a n y e f f o r t s h a v e b e e n m a d e t o i m p r o v e t h e p e r f o r m a n c e o f L i - S b a t t e r i e s . T h e m o s t
p o p u l a r a p p r o a c h i s t o e n c a p s u l a t e s u l f u r i n t h e p o r e s o f c a r b o n m a t e r i a l s o r a c o n d u c t iv e p o l y m e r
m a t r i x . A n e n c o u r a g i n g e a r l y i n d i c a t i o n i s t h a t , i n s o m e c a s e s , t h e s p e c i a l s t r u c t u r e o f s u l f u r c a r r i e r s
s u c h a s p o r o u s c a r b o n c a n p r e v e n t p o l y s u l f i d e s f r o m d i s s o l v i n g i n t h e e l e c t r o l y t e .
[ 2 ]
M a c r o p o r o u s o r

3
m e s o p o r o u s c a r b o n m a t e r i a l s h a v e u s e f u l l a r g e p o r e v o l u m e s b u t t h e i r l a r g e p o r e s h a v e p r o v e d t o b e
i n e f f i c i e n t f o r t h e c a p t u r e o f s u l f u r a n d , f u r t h e r m o r e , t h e y d o n o t b l o c k t h e n a t u r a l l y h i g h s o l u b i l i t y
o f p o l y s u l f i d e s .
[ 1 b ]
M i c r o p o r o u s c a r b o n m a t e r i a l s w i t h p o r e s i z e s < ~ 1 n m , o n t h e o t h e r h a n d , c a n
e f f e c t i v e l y i n c r e a s e t h e e l e c t r o c h e m i c a l p e r f o r m a n c e o f L i - S b a t t e r i e s .
[ 3 ]
( T h e I U P A C G o l d B o o k
[ 4 ]
r e c o m m e n d s t h e t e r m m i c r o p o r o u s f o r c a r b o n a c e o u s m a t e r i a l s w i t h p o r e s i z e s < 2 n m . T h e y a r e
a l s o c o m m o n l y d e s c r i b e d a s n a n o p o r o u s i n t h e l i t e r a t u r e ) .
C a r b o n n a n o t u b e s ( C N T s ) , a 1 - D a l l o t r o p e o f c a r b o n w i t h e x t r a o r d i n a r y p r o p e r t i e s , h a v e b e e n
w i d e l y i n v e s t i g a t e d i n r e c e n t d e c a d e s . N o t o n l y d o C N T s e x h i b i t o u t s t a n d i n g m e c h a n i c a l s t r e n g t h
a n d a v e r y l a r g e s u r f a c e - to- v o l u m e r a t i o , s o m e s p e c i f i c f o r m s a r e a l s o h i g h l y e l e c t r i c a l l y c o n d u c t i v e .
F o r t h i s l a t t e r r e a s o n , C N T s h a v e b e e n u s e d t o c o n s t r u c t e l e c t r o c h e m i c a l e l e c t r o d e s f o r s e n s i n g
[ 5 ]
a n d
e n e r g y s t o r a g e .
[ 6 ]
G r a p h e n e i s a r e c e n t l y d i s c o v e r e d 2 - D s p
2
c a r b o n , w h i c h e x h i b i t s a n e v e n h i g h e r
c h a r g e - c a r r i e r m o b i l i t y a n d s p e c i f i c s u r f a c e a r e a t h a n C N T s . G r a p h e n e i s a l s o a n a t t r a c t i v e c h o i c e f o r
p o t e n t i a l a p p l i c a t i o n s i n a c t u a t o r s ,
[ 7 ]
s o l a r c e l l s ,
[ 8 ]
s u p e r c a p a c i t o r s ,
[ 9 ]
a n d b a t t e r i e s .
[ 1 0 ]
M u l t i - w a l l e d
c a r b o n n a n o t u b e s ,
[ 1 1 ]
g r a p h e n e ,
[ 1 2 ]
g r a p h e n e o x i d e
[ 1 3 ]
h a v e b e e n t r ia l e d f o r t h e L i - S b a t t e r i e s a l s o .
Q i a n S u n e t a l . r e p o r t e d a n a l i g n e d a n d l a m i n a t e d s u l f u r - a b s o r b e d m e s o p o r o u s c a r b o n / C N T h y b r i d
f o r Li- S b a t t e r i e s w i t h a h i g h c a p a c i t y o f 1 2 2 6 m A h g
- 1
a n d a c h i e v e s a c a p a c i t y r e t e n t i o n o f 7 5 %
a f t e r 1 0 0 c y c l e s a t 0 . 1 C .
[ 1 4 ]
H o w e v e r , b o t h f o r m s o f C N T a n d g r a p h e n e e x h i b i t a t e n d e n c y t o a g g r e -
g a t e d u e t o s t r o n g v a n d e r W a a l s i n t e r a c t i o n s . T h i s d e g r a d e s t h e a t t a i n a b l e p h y s i c a l p r o p e r t i e s o f c a r -
b o n n a n o t u b e s a n d g r a p h e n e . T h e s y n t h e s i s o f C N T a n d g r a p h e n e c o m p o s i t e s w i t h a 3 D h i e r a r c h i c a l
s t r u c t u r e c a n e f f e c t i v e l y m i t i g a t e t h e s e l f - a g g r e g a t i o n a n d r e - s t a c k i n g o f c a r b o n n a n o t u b e s a n d g r a -
p h e n e , t h e r e b y p r e s e r v i n g t h e i r i n t r i n s i c p h y s i c a l p r o p e r t i e s . T h e o r e t i c a l r e s e a r c h h a s a l s o s u g g e s t e d
t h a t a c o v a l e n t l y b o n d e d g r a p h e n e a n d s i n g l e - w a l l e d c a r b o n n a n o t u b e h y b r i d m a t e r i a l c a n e x t e n d
t h e i r e l e c t r o n i c p r o p e r t ie s t o 3 D f o r a p p l i c a t i o n s i n e n e r g y s t o r a g e a n d n a n o e l e c t r o n i c
tec h n o l o g i e s .
[ 1 5 ]
T h e r e f o r e , 3 D c a r b o n - n e t w o r k s c o m b i n i n g 1 D c a r b o n n a n o t u b e s a n d 2 D g r a p h e n e

4
h a v e a t t r a c t e d c o n s i d e r a b l e i n t e r e st f o r t h e L i - S b a t t e r i e s .
[ 1 6 ]
H u i s h e n g P e n g e t a l . s u m m a r i z e d r e c e n t
p r o g r e s s o n h y b r i d c a r b o n s t r u c t u r e s f o r t h e r e c h a r g e a b l e Li- S b a t t e r i e s .
[ 1 7 ]
G e n e r a l l y , h y b r i d s o f C N T s a n d g r a p h e n e c a n b e s y n t h e s i z e d b y c a t a l y t i c g r o w t h o f o n e b u i l d i n g
b l o c k o n t h e o t h e r o n e .
[ 1 8 ]
S u c h a s Q i a n g Z h a n g a n d c o - a u t h o r s f a b r i c a t e d g r a p h e n e / s i n g l e - w a l l e d
c a r b o n n a n o t u b e h y b r i d b y a c a t a l y t i c g r o w t h o n l a y e r e d d o u b l e h y d r o x i d e a t a h i g h t e m p e r a t u r e
o v e r 9 5 0 °C a s c a t h o d e m a t e r i a l s f o r L i - S b a t t e r i e s . T h e h y b r i d e x h i b i t e d g o o d p e r f o r m a n c e w i t h a
c a p a c i t y a s h i g h a s 6 5 0 m A h g
- 1
a f t e r 1 0 0 c y c l e s e v e n a t a h i g h c u r r e n t r a t e.
[ 1 9 ]
H o w e v e r , t h e s t a b i l -
i t y o f m e t a l c a t a l y s t s o n c a r b o n s u p p o r t s i s v e r y c o m p l i c a t e d .
[ 1 8 ]
S o m e r e c e n t a t t e m p t s h a v e b e e n
m a d e t o f a b r i c a t e c a r b o n n a n o t u b e a n d g r a p h e n e h y b r i d f i l m s b y s p i n - c o a t i n g h o m o g e n e o u s l y m i x e d
s o l u t i o n s o f t h e t w o c a r b o n - b a s e d n a n o m a t e r i a l s .
[ 2 0 ]
H o w e v e r , t h e h y b r i d f i l m s c o n s i s t o f a g g r e g a t e d
t h i c k g r a p h e n e l a y e r s w i t h p o o r c o n t r o l l a b i l i t y . T h e r e a r e a l s o r e p o r t s o f h y d r o t h e r m a l p r o c e s s e s u s -
i n g g r a p h e n e o x i d e ( G O ) a n d o x i d i z e d m u l ti - w a l l e d c a r b o n n a n o t u b e a s p r e c u r s o r s t o s y n t h e s i z e
c a r b o n n a n o t u b e a n d g r a p h e n e c o m p o s i t e s .
[ 2 1 ]
S o f a r , h o w e v e r , r e p o r t s o f h y b r i d s i n w h i c h i n t e g r a -
t i o n o f h i g h - q u a l i t y a l i g n e d c a r b o n n a n o t u b e a n d g r a p h e n e h a v e b e e n a c h i e v e d a r e v e r y r a r e . G e n e r -
a l l y , i t s e e m s t h a t t h e e x c e l l e n t p h y s i c a l p r o p e r t i e s o f t h e p u r e C N T a n d g r a p h e n e a l l o t r o p e s a r e n o t
i n h e r i t e d b y t h e h y b r i d s t r u c t u r e .
[ 1 6 a ]
I t h a s b e e n f u r t h e r r e p o r t e d t h a t , t u n a b l e c h e m i c a l t e c h n i q u e s , s u c h a s u s i n g f u n c t i o n a l g r o u p s ,
d o p i n g , a n d s u r f a c e m o d i f i c a t i o n o n t h e s p
2
c a r b o n , c a n h e l p w i t h t h e a t t a i n m e n t o f t h e d e s i r e d p h y s -
i c a l a n d c h e m i c a l p r o p e r ti e s . F o r e x a m p l e , i n e n e r g y s t o r a g e a p p l i c a t i o n s , i t w a s f o u n d t h a t n i t r o g e n
d o p e d s p
2
c a r b o n s h a v e s i g n i f ic a n t l y i m p r o v e d e l e c t r o c h e m i c a l p e r f o r m a n c e a n d c a t a l y t i c
a c t i v i t y .
[ 1 0 a]
T h i s i s b e c a u s e n i t r o g e n b e a r s f i v e v a l e n c e e l e c t r o n s w h i c h i n d u c e a s h i f t i n t h e F e r m i
l e v e l t o t h e c o n d u c t i n g b a n d .
[ 2 2 ]
W h e n n i t r o g e n - d o p e d g r a p h e n e a n d c a r b o n n a n o t u b e ( N - GE- C N T s )
h y b r i d s w e r e u s e d a s c a t h o d e m a t e r i a l s f o r L i - S b a t t e r i e s , e n h a n c e d c y c l i n g a n d r a t e p e r f o r m a n c e s
c a n b e d e m o n s t r a t e d .
[ 2 3 ]
T h e r e f o r e , N - GE- C N T s h y b r i d s a r e a l s o a p r o m i s i n g c a n d i d a t e f o r L i - S b a t -
t e r i e s . P r e v i o u s l y , t h e n i t r o g e n w a s d o p e d i n f r o m o u t s i d e s o u r c e s , s u c h a s a m m o n i a ,
[ 2 1 ]
p y r i d i n e ,
[ 2 4 ]

Citations
More filters

High-Power Lithium Batteries from Functionalized Carbon Nanotube Electrodes

TL;DR: Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes, which had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 timesHigher than conventional lithium-ion batteries.
Journal ArticleDOI

Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries

TL;DR: It is revealed that monodisperse cobalt atoms embedded in nitrogen-doped graphene (Co-N/G) can trigger the surface-mediated reaction of Li polysulfides to facilitate both the formation and the decomposition of Li2S in discharge and charge processes, respectively.

Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries

TL;DR: In this article, a mesoporous nitrogen-doped carbon (MPNC)-sulfur nanocomposite is reported as a novel cathode for advanced Li-S batteries.
Journal ArticleDOI

Ultrafine Co Nanoparticles Encapsulated in Carbon-Nanotubes-Grafted Graphene Sheets as Advanced Electrocatalysts for the Hydrogen Evolution Reaction.

TL;DR: A novel and effective approach is developed for synthesizing ultrafine Co nanoparticles encapsulated in nitrogen-doped carbon nanotubes grafted onto both sides of reduced graphene oxide (rGO) by direct annealing of GO-wrapped core-shell bimetallic zeolite imidazolate frameworks, which may open a new avenue toward the development of nonprecious high-performance HER catalysts.
Journal ArticleDOI

Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion.

TL;DR: The research of Prussian blue and its analog (PBA) related nanomaterials has emerged and has drawn considerable attention because of their low cost, facile preparation, intrinsic open framework, and tunable composition.
References
More filters
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Journal ArticleDOI

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries

TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Journal ArticleDOI

Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells

TL;DR: Transparent, conductive, and ultrathin graphene films, as an alternative to the ubiquitously employed metal oxides window electrodes for solid-state dye-sensitized solar cells, are demonstrated and show high chemical and thermal stabilities and an ultrasmooth surface with tunable wettability.
Journal ArticleDOI

Lithium–Sulfur Batteries: Electrochemistry, Materials, and Prospects

TL;DR: Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.
Journal ArticleDOI

Graphene-Wrapped Sulfur Particles as a Rechargeable Lithium–Sulfur Battery Cathode Material with High Capacity and Cycling Stability

TL;DR: In this article, the synthesis of a graphene-sulfur composite material by wrapping poly(ethylene glycol) (PEG) coated submicrometer sulfur particles with mildly oxidized graphene oxide sheets decorated by carbon black nanoparticles was reported.
Related Papers (5)