scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fabrication of porous magnetic nanocomposites for bone tissue engineering

TL;DR: In this article, the fabrication and characterization of porous magnetic nanocomposites was carried out via the blending of chitosan, polyethylene glycol and nano-hydroxyapatite-Fe3O4.
Abstract: Here, the fabrication and characterization of porous magnetic nanocomposites was carried out via the blending of chitosan, polyethylene glycol and nano-hydroxyapatite–Fe3O4. Scanning electron microscope images revealed a highly interconnected macro- and micro-porous structure. These nanocomposites showed good water uptake abilities and have good antimicrobial properties. The tensile strengths of these nanocomposites were enhanced significantly compared to previously reported results, after the addition of nano-Fe3O4. Moreover, these nanocomposites could be applied for magnetic therapy as this material exhibited superparamagnetic properties. Finally, these nanocomposites were good supports for human osteoblast-like MG-63 cells’ growth, attachment and proliferation and they showed good cytocompatibility. No negative effect on the MG-63 cells was observed, suggesting that these nanocomposites have great potential to be applied for bone regeneration.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a nanocomposite scaffold was synthesized for bone tissue engineering using bacterial cellulose (BC) with magnetite (Fe3O4) and hydroxyapatite (HA) nanoparticles through ultrasonic irradiation.

77 citations

Journal ArticleDOI
Yan Li1, Dewen Ye1, Mingxi Li1, Ming Ma1, Ning Gu1 
TL;DR: This Minireview aims to summarize the relevant progress and describes the following five aspects: magneto-mechanical actuation in the regulation of cells distribution, mechano-transduction membrane receptors activation, and mechanosensitive signaling pathways regulation, and fabrication, characteristics, and in vitro and in-vivo osteogenic effects of magnetic composite bone scaffolds.
Abstract: The paper provides a brief overview of the use of iron oxide nanoparticles (IONPs) in the areas of bone regenerative medicine. Reconstruction of bone defects caused by trauma, non-union, and bone tumor excision, still faces many challenges despite the intense investigations and advancement in bone-tissue engineering and bone regeneration over the past decades. IONPs have promising prospects in this field due to their controlled responsive characteristics in specific external magnetic fields and have been of great interest during the last few years. This Minireview aims to summarize the relevant progress and describes the following five aspects: (i) The general introduction of IONPs, with a focus on the magnetic properties as the base of application; (ii) using IONPs as tools to study and control stem cells for better treatment efficacy in stem-cell-based bone defect repair; (iii) the use of IONPs and their complexes in the delivery of therapeutic agents, including chemical drug molecules, growth factors, and genetic materials, to promote osteogenesis-related cell function and differentiation, healthy bone tissue growth, and functional reconstruction; (iv) magneto-mechanical actuation in the regulation of cells distribution, mechano-transduction membrane receptors activation, and mechanosensitive signaling pathways regulation, and (v) fabrication, characteristics, and in vitro and in vivo osteogenic effects of magnetic composite bone scaffolds. Ongoing prospects are also discussed.

47 citations

Journal ArticleDOI
TL;DR: In this paper , the impact of nano-reinforcing agents on the elastic properties of functionally graded porous (FGP) nanocomposites was analyzed and classified for different engineering analysis types including buckling, thermal, vibrational, thermoelasticity, static, and dynamic bending.
Abstract: Abstract Functionally graded porous (FGP) nanocomposites are the most promising materials among the manufacturing and materials sector due to their adjustable physical, mechanical, and operational properties for distinctive engineering applications for maximized efficiency. Therefore, investigating the underlying physical and materialistic phenomena of such materials is vital. This research was conducted to analyze the preparation, fabrication, applications, and elastic properties of functionally graded materials (FGMs). The research investigated for both porous and nonporous synthesis, preparation, and manufacturing methods for ceramics, metallic, and polymeric nanocomposites in the first section, which is followed by deep research of the development of elastic properties of the above-mentioned materials. Main nano-reinforcing agents used in FGMs to improve elastic properties were found to be graphene platelets, carbon nanotubes, and carbon nanofibers. In addition, research studied the impact of nano-reinforcing agent on the elastic properties of the FGMs. Shape, size, composition, and distribution of nano-reinforcing agents were analyzed and classified. Furthermore, the research concentrated on modeling of FGP nanocomposites. Extensive mathematical, numerical, and computational modeling were analyzed and classified for different engineering analysis types including buckling, thermal, vibrational, thermoelasticity, static, and dynamic bending. Finally, manufacturing and design methods regarding different materials were summarized. The most common results found in this study are that the addition of reinforcement units to any type of porous and nonporous nanocomposites significantly increases materialistic and material properties. To extend, compressive and tensile stresses, buckling, vibrational, elastic, acoustical, energy absorption, and stress distribution endurance are considerably enhanced when reinforcing is applied to porous and nonporous nanocomposite assemblies. Ultimately, the review concluded that the parameters such as shape, size, composition, and distribution of the reinforcing units are vital in terms of determining the final mechanical and materialistic properties of nanocomposites.

34 citations

Journal ArticleDOI
TL;DR: Results of the present study indicate that nHA-CH-TFSP could serve as a prospective analogue for bone tissue engineering.

26 citations

Journal ArticleDOI
TL;DR: The synthesized scaffold incorporating Euryale ferox with nano-hydroxyapatite and chitosan can be envisioned for potential use in reparation of bone defects as part of ongoing research in the field of bone tissue engineering.
Abstract: In order to explore novel synthetic bone scaffolds as part of our ongoing research in the field of bone tissue engineering, we have synthesized a biomimmetic, osteoinductive, tricomposite scaffold incorporating Euryale ferox (EF) with nano-hydroxyapatite and chitosan. The surface morphology of the resultant nanocomposite was visualized via SEM and TEM studies which exhibited a rougher surface of n-HA/CS/EF compared to the n-HA/CS nanocomposite with the particle size ranging between 15 and 20 nm. The n-HA/CS/EF scaffold was degraded up to (16.9 ± 0.70)% in contrast to degradation of (7.4 ± 0.2)% for n-HA/CS. The in vitro SBF study exhibited excellent biomineralization capacity for n-HA/CS/EF which was further elucidated using the ARS staining procedure. The MTT assay illustrated significantly better cell viability compared to the n-HA/CS nanocomposite. A comparatively better antibacterial activity of n-HA/CS/EF was observed against a number of bacterial pathogens. The osteogenic differentiation test (ALP assay) assessed the osteoconductivity of the n-HA/CS/EF nanocomposite. Thus, the synthesized scaffold can be envisioned for potential use in reparation of bone defects.

17 citations

References
More filters
Journal ArticleDOI
TL;DR: This review discusses the synthetic chemistry, fluid stabilization and surface modification of superparamagnetic iron oxide nanoparticles, as well as their use for above biomedical applications.

6,207 citations

Journal ArticleDOI
TL;DR: Hydrogels are an appealing scaffold material because they are structurally similar to the extracellular matrix of many tissues, can often be processed under relatively mild conditions, and may be delivered in a minimally invasive manner.

4,573 citations

Journal ArticleDOI
TL;DR: Challenges in scaffold fabrication for tissue engineering such as biomolecules incorporation, surface functionalization and 3D scaffold characterization are discussed, giving possible solution strategies.

3,505 citations

Journal ArticleDOI
Shouheng Sun1, Hao Zeng1, David B. Robinson1, Simone Raoux1, Philip M. Rice1, Shan X. Wang1, Guanxiong Li1 
TL;DR: As-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD and can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made.
Abstract: High-temperature solution phase reaction of iron(III) acetylacetonate, Fe(acac)3, with 1,2-hexadecanediol in the presence of oleic acid and oleylamine leads to monodisperse magnetite (Fe3O4) nanoparticles. Similarly, reaction of Fe(acac)3 and Co(acac)2 or Mn(acac)2 with the same diol results in monodisperse CoFe2O4 or MnFe2O4 nanoparticles. Particle diameter can be tuned from 3 to 20 nm by varying reaction conditions or by seed-mediated growth. The as-synthesized iron oxide nanoparticles have a cubic spinel structure as characterized by HRTEM, SAED, and XRD. Further, Fe3O4 can be oxidized to Fe2O3, as evidenced by XRD, NEXAFS spectroscopy, and SQUID magnetometry. The hydrophobic nanoparticles can be transformed into hydrophilic ones by adding bipolar surfactants, and aqueous nanoparticle dispersion is readily made. These iron oxide nanoparticles and their dispersions in various media have great potential in magnetic nanodevice and biomagnetic applications.

3,244 citations

Journal ArticleDOI
TL;DR: This HAp/Col composite having similar nanostructure and composition can replace autologous bone grafts and indicated the same biological properties as grafted bone.

837 citations