scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fabrication, structural evaluation, optical and photoelectrochemical properties of soft lithography based 1D/2D surface patterned indium titanium oxide sol-gel thin film

TL;DR: In this paper, a mesoporous indium titanium oxide (INTO) sol-gel-based thin film was fabricated on glass by soft lithography, where the surface patterns over amorphous thin film surfaces were performed by atomic force and transmission electron microscopes as well as X-ray diffraction study.
Abstract: For the first time, we report on successful fabrication of 1-dimensional (1D) nanoprism and 2-dimensional (2D) nanocone shaped surface patterned amorphous indium titanium oxide (INTO) sol-gel based mesoporous thin films on glass by soft lithography. Structural evaluation of the surface patterns over amorphous thin film surfaces was performed by atomic force and transmission electron microscopes as well as X-ray diffraction study. Chemical bonding/oxidation state of constituent elements in INTO film matrix was analyzed by FTIR and X-ray photoelectron spectroscopies. Maximum optical absorption and minimum specular surface reflection in visible region were noticed in 2D patterned film. The thin film with physical thickness over 100 nm was mesoporous in nature (~ 14% porosity) as measured by spectroscopic ellipsometer. A significant improvement in photoelectrochemical (PEC) activity was found in 2D patterned film under visible light that could be associated with the enhancement in light absorption/trapping by the periodic nanocones. Moreover, the existence of mesopores could provide excess active sites for electrolyte diffusion and mass transportation. Thus, the mesoporous 2D patterned thin film could have substantial opportunity in solar energy conversion. The facile technique could create an avenue for fabrication of complexed surface patterned thin films with improved PEC property.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reported the fabrication of hierarchically (macro with nested meso) porous nanocrystalline TiO2-ZnO heterojunction film onto a fluorine-doped tin oxide-coated glass substrate by colloidal crystal templating technique using poly(methyl methacrylate) (PMMA) spheres as template.
Abstract: For the first time, we report the fabrication of hierarchically (macro with nested meso) porous nanocrystalline TiO2–ZnO heterojunction film onto fluorine-doped tin oxide-coated glass substrate by colloidal crystal templating technique using poly(methyl methacrylate) (PMMA) spheres as template. Accordingly, the precursor solutions of titanium isopropoxide and zinc acetate dihydrate in the presence of Pluronic P123 were used to impregnate the individual solution into the template. Initially, nanocrystalline TiO2 inverse opal mesoporous film was deposited using the titanium precursor. The film was cured at 450 °C in an air atmosphere. A similar process was adopted to deposit nanocrystalline ZnO inverse opal mesoporous film onto the TiO2 to obtain hierarchically porous TiO2–ZnO heterojunction nanocrystalline film. Morphology of the fabricated films showed a periodic arrangement of macropores, whereas the microstructural analysis confirmed the presence of nested mesopores in the film network. Chemical interaction existed between TiO2 with ZnO forming the heterojunction film was ascertained by X-ray photoelectron spectroscopy. Light harvesting efficiency of the samples was studied, and the photoelectrochemical (PEC) performance of the hierarchically porous heterojunction films as photoanode showed about 5 times enhancement in photocurrent density compared to the pristine metal–oxide–semiconductor film under visible light exposure. The porous nanocrystalline hierarchically porous inverse opal heterojunction film could be used as an efficient photoanode in PEC cell.

13 citations

Journal ArticleDOI
TL;DR: In this article, one-dimensional and two-dimensional mesoscale surface patterns have been created on sol-gel-based titanium tin oxide (TSO) nanostructured thin film on pure silica/indium tin oxide-coated glass by soft lithography.
Abstract: Nano noble metal coating on surface patterned mesoporous semiconductor thin film can play an important role in enhancing visible light harvesting efficiency (LHE) towards improvement in photoelectrochemical (PEC) activity of the material. In this work, one-dimensional (1D) and two-dimensional (2D) mesoscale surface patterns have been created on sol–gel-based titanium tin oxide (TSO) nanostructured thin film on pure silica/indium tin oxide-coated glass by soft lithography. The TSO film matrix is observed to be mesoporous and semicrystalline as evidenced from the structural characterization by transmission electron microscopy and measurement of atmospheric ellipso-porosimetry, respectively. The 2D patterned film exhibits maximum LHE value in visible wavelength region. Further film surface modification has been carried out by depositing nano Au coating onto the bare patterned TSO films by a low temperature solution technique. Under visible light, a significant improvement in PEC activity is found and the gold-coated patterned 2D film shows higher visible LHE as well as >2.7 times higher photocurrent density than bare 2D film. This facile fabrication strategy can create an avenue toward improvement in LHE vis-a-vis the PEC activity of mesoporous mixed metal oxide semiconductor thin film.

4 citations

Journal ArticleDOI
TL;DR: In this article, a homogeneously distributed near periodic macroporous (HDPM) with nested mesoporous (hierarchically porous) semicrystalline zinc titanium oxide (ZTO) thin film on pure silica glass and fluorine doped tin oxide coated glass substrates was deposited by sol-gel dip coating technique from an optimized precursor solution of zinc nitrate hexahydrate and titanium isopropoxide with acetylacetone in low boiling solvents.
Abstract: In this work, for the first time homogeneously distributed near periodic macroporous (HDPM) with nested mesoporous (hierarchically porous) semicrystalline zinc titanium oxide (ZTO) thin film on pure silica glass and fluorine doped tin oxide coated glass substrates was deposited by sol–gel dip coating technique from an optimized precursor solution of zinc nitrate hexahydrate and titanium isopropoxide with acetylacetone in low boiling solvents. The HDPM film formation was carried out by simple breath figure method where the pore formation occurred from the generated water droplets via molecular condensation onto the as-deposited cold solution film surface owing to solvent evaporation. Zinc to titanium ratio in precursor solution, room relative humidity and other critical parameters were tailored towards optimization of the periodic macropores formation. Gold nanoparticles (NPs) were further deposited onto the ZTO thin films by solution technique. Crystallinity, surface morphology and microstructure of the thin films were critically analyzed by X-ray diffraction, atomic force, scanning, and transmission electron microscopic studies. The photoelectrochemical (PEC) performance of the films was examined under visible light irradiation. A significant improvement in PEC activity was observed in nano Au coated hierarchically porous thin film. This facile fabrication process could be applied in different mixed metal oxide thin films for improving the PEC activity of the materials.

4 citations

Journal ArticleDOI
TL;DR: In this paper, a pure Ti target in Ar/O2 gas mixture was used to synthesize Ti3Ox thin film on a glass substrate by Reactive High-Power Impulse Magnetron Sputtering (HiPIMS) under different sputtering power (2 and 2.5 kW).
Abstract: A pure Ti target in Ar/O2 gas mixture was used to synthesize Ti3Ox thin film on a glass substrate by Reactive High-Power Impulse Magnetron Sputtering (HiPIMS) under different sputtering power (2 and 2.5 kW). The influence of HiPIMS parameters on thin films’ structural, morphological, chemical composition, optical and photocatalytic, and antibacterial properties was investigated. In this study, Ti3Ox thin films can be synthesized using the HiPIMS method without the post-annealing process. Two co-existence phases (hexagonal Ti3O and base-centered monoclinic Ti3O5 phases) existed on the Ti3Ox films. It is found that the peak intensity of (006) Ti3O hexagonal slightly increased as the sputtering power increased from 2 to 2.5 kW. The Ti3Ox thin-film bandgap values were 3.36 and 3.50 eV for 2 and 2.5 kW, respectively. The Ti3Ox films deposited at 2.5 kW showed good photocatalytic activity under UV light irradiation, with a higher methylene blue dye degradation rate than TiO2 thin films. The antibacterial study on Ti3Ox thin films exhibited a high inhibition percentage against E. coli and S. aureus. This study demonstrates that Ti3Ox thin films can promote high photocatalytic and antibacterial activity.

3 citations

References
More filters
Journal ArticleDOI
TL;DR: This protocol provides an introduction to soft lithography—a collection of techniques based on printing, molding and embossing with an elastomeric stamp that has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics.
Abstract: This protocol provides an introduction to soft lithography--a collection of techniques based on printing, molding and embossing with an elastomeric stamp. Soft lithography provides access to three-dimensional and curved structures, tolerates a wide variety of materials, generates well-defined and controllable surface chemistries, and is generally compatible with biological applications. It is also low in cost, experimentally convenient and has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics. As examples, here we focus on three of the commonly used soft lithographic techniques: (i) microcontact printing of alkanethiols and proteins on gold-coated and glass substrates; (ii) replica molding for fabrication of microfluidic devices in poly(dimethyl siloxane), and of nanostructures in polyurethane or epoxy; and (iii) solvent-assisted micromolding of nanostructures in poly(methyl methacrylate).

1,954 citations

Journal ArticleDOI
TL;DR: The current state of research on nanoscale-enhanced photoelectrodes and photocatalysts for the water splitting reaction with special emphasis of Fe(2)O(3) with an outlook on the challenges in solar fuel generation with nanoscales inorganic materials is reviewed.
Abstract: The increasing human need for clean and renewable energy has stimulated research in artificial photosynthesis, and in particular water photoelectrolysis as a pathway to hydrogen fuel. Nanostructured devices are widely regarded as an opportunity to improve efficiency and lower costs, but as a detailed analysis shows, they also have considerably disadvantages. This article reviews the current state of research on nanoscale-enhanced photoelectrodes and photocatalysts for the water splitting reaction. The focus is on transition metal oxides with special emphasis of Fe2O3, but nitrides and chalcogenides, and main group element compounds, including carbon nitride and silicon, are also covered. The effects of nanostructuring on carrier generation and collection, multiple exciton generation, and quantum confinement are also discussed, as well as implications of particle size on surface recombination, on the size of space charge layers and on the possibility of controlling nanostructure energetics via potential determining ions. After a summary of electrocatalytic and plasmonic nanostructures, the review concludes with an outlook on the challenges in solar fuel generation with nanoscale inorganic materials.

1,779 citations

Journal ArticleDOI
TL;DR: This review describes the pattering of proteins and cells using a non-photolithographic microfabrication technology, which consists of a set of related techniques, each of which uses stamps or channels fabricated in an elastomeric ('soft') material for pattern transfer.

1,594 citations

Journal ArticleDOI
TL;DR: In this article, the anisotropic etching behavior of single-crystal silicon and the behavior of and in an ethylenediamine-based solution as well as in aqueous,, and were studied.
Abstract: The anisotropic etching behavior of single‐crystal silicon and the behavior of and in an ethylenediaminebased solution as well as in aqueous , , and were studied. The crystal planes bounding the etch front and their etch rates were determined as a function of temperature, crystal orientation, and etchant composition. A correlation was found between the etch rates and their activation energies, with slowly etching crystal surfaces exhibiting higher activation energies and vice versa. For highly concentrated solutions, a decrease of the etch rate with the fourth power of the water concentration was observed. Based on these results, an electrochemical model is proposed, describing the anisotropic etching behavior of silicon in all alkaline solutions. In an oxidation step, four hydroxide ions react with one surface silicon atom, leading to the injection of four electrons into the conduction band. These electrons stay localized near the crystal surface due to the presence of a space charge layer. The reaction is accompanied by the breaking of the backbonds, which requires the thermal excitation of the respective surface state electrons into the conduction band. This step is considered to be rate limiting. In a reduction step, the injected electrons react with water molecules to form new hydroxide ions and hydrogen. It is assumed that these hydroxide ions generated at the silicon surface are consumed in the oxidation reaction rather than those from the bulk electrolyte, since the latter are kept away from the crystal by the repellent force of the negative surface charge. According to this model, monosilicic acid is formed as the primary dissolution product in all anisotropic silicon etchants. The anisotropic behavior is due to small differences of the energy levels of the backbond surface states as a function of the crystal orientation.

1,529 citations

Journal ArticleDOI
TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Abstract: Optical transparency, tunable conducting properties and easy processability make metal oxides key materials for advanced optoelectronic devices. This Review discusses recent advances in the synthesis of these materials and their use in applications. Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III–V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p–n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

1,098 citations