scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Face anti-spoofing with multifeature videolet aggregation

TL;DR: A novel multi-feature evidence aggregation method for face spoofing detection that fuses evidence from features encoding of both texture and motion properties in the face and also the surrounding scene regions and provides robustness to different attacks.
Abstract: Biometric systems can be attacked in several ways and the most common being spoofing the input sensor. Therefore, anti-spoofing is one of the most essential prerequisite against attacks on biometric systems. For face recognition it is even more vulnerable as the image capture is non-contact based. Several anti-spoofing methods have been proposed in the literature for both contact and non-contact based biometric modalities often using video to study the temporal characteristics of a real vs. spoofed biometric signal. This paper presents a novel multi-feature evidence aggregation method for face spoofing detection. The proposed method fuses evidence from features encoding of both texture and motion (liveness) properties in the face and also the surrounding scene regions. The feature extraction algorithms are based on a configuration of local binary pattern and motion estimation using histogram of oriented optical flow. Furthermore, the multi-feature windowed videolet aggregation of these orthogonal features coupled with support vector machine-based classification provides robustness to different attacks. We demonstrate the efficacy of the proposed approach by evaluating on three standard public databases: CASIA-FASD, 3DMAD and MSU-MFSD with equal error rate of 3.14%, 0%, and 0%, respectively.
Citations
More filters
Proceedings ArticleDOI
TL;DR: A novel two-stream CNN-based approach for face anti-spoofing is proposed, by extracting the local features and holistic depth maps from the face images, which facilitate CNN to discriminate the spoof patches independent of the spatial face areas.
Abstract: The face image is the most accessible biometric modality which is used for highly accurate face recognition systems, while it is vulnerable to many different types of presentation attacks. Face anti-spoofing is a very critical step before feeding the face image to biometric systems. In this paper, we propose a novel two-stream CNN-based approach for face anti-spoofing, by extracting the local features and holistic depth maps from the face images. The local features facilitate CNN to discriminate the spoof patches independent of the spatial face areas. On the other hand, holistic depth map examine whether the input image has a face-like depth. Extensive experiments are conducted on the challenging databases (CASIA-FASD, MSU-USSA, and Replay Attack), with comparison to the state of the art.

349 citations


Cites methods from "Face anti-spoofing with multifeatur..."

  • ...The remaining methods in Table 3 are some state-of-the-art methods which utilize handcrafted features along with a classifier [39, 9, 7]....

    [...]

Proceedings ArticleDOI
14 Jun 2020
TL;DR: Yu et al. as discussed by the authors proposed a frame level FAS method based on Central Difference Convolution (CDC), which is able to capture intrinsic detailed patterns via aggregating both intensity and gradient information.
Abstract: Face anti-spoofing (FAS) plays a vital role in face recognition systems. Most state-of-the-art FAS methods 1) rely on stacked convolutions and expert-designed network, which is weak in describing detailed fine-grained information and easily being ineffective when the environment varies (e.g., different illumination), and 2) prefer to use long sequence as input to extract dynamic features, making them difficult to deploy into scenarios which need quick response. Here we propose a novel frame level FAS method based on Central Difference Convolution (CDC), which is able to capture intrinsic detailed patterns via aggregating both intensity and gradient information. A network built with CDC, called the Central Difference Convolutional Network (CDCN), is able to provide more robust modeling capacity than its counterpart built with vanilla convolution. Furthermore, over a specifically designed CDC search space, Neural Architecture Search (NAS) is utilized to discover a more powerful network structure (CDCN++), which can be assembled with Multiscale Attention Fusion Module (MAFM) for further boosting performance. Comprehensive experiments are performed on six benchmark datasets to show that 1) the proposed method not only achieves superior performance on intra-dataset testing (especially 0.2% ACER in Protocol-1 of OULU-NPU dataset), 2) it also generalizes well on cross-dataset testing (particularly 6.5% HTER from CASIA-MFSD to Replay-Attack datasets). The codes are available at https://github.com/ZitongYu/CDCN.

264 citations

Book ChapterDOI
08 Sep 2018
TL;DR: A CNN architecture with proper constraints and supervisions is proposed to overcome the problem of having no ground truth for the decomposition of face de-spoofing, and the results show promising improvements due to the spoof noise modeling.
Abstract: Many prior face anti-spoofing works develop discriminative models for recognizing the subtle differences between live and spoof faces. Those approaches often regard the image as an indivisible unit, and process it holistically, without explicit modeling of the spoofing process. In this work, motivated by the noise modeling and denoising algorithms, we identify a new problem of face de-spoofing, for the purpose of anti-spoofing: inversely decomposing a spoof face into a spoof noise and a live face, and then utilizing the spoof noise for classification. A CNN architecture with proper constraints and supervisions is proposed to overcome the problem of having no ground truth for the decomposition. We evaluate the proposed method on multiple face anti-spoofing databases. The results show promising improvements due to our spoof noise modeling. Moreover, the estimated spoof noise provides a visualization which helps to understand the added spoof noise by each spoof medium.

183 citations


Cites background from "Face anti-spoofing with multifeatur..."

  • ...To overcome some of these difficulties, researchers tackle the problem in different domains, such as HSV and YCbCr color space [24,25], temporal domain [26,27,28,29] and Fourier spectrum [30]....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive review of techniques incorporating ancillary information in the biometric recognition pipeline is presented in this paper, where the authors provide a comprehensive overview of the role of information fusion in biometrics.

151 citations

Journal ArticleDOI
TL;DR: This paper introduces the first-of-its-kind silicone mask attack database which contains 130 real and attacked videos to facilitate research in developing presentation attack detection algorithms for this challenging scenario.
Abstract: In movies, film stars portray another identity or obfuscate their identity with the help of silicone/latex masks. Such realistic masks are now easily available and are used for entertainment purposes. However, their usage in criminal activities to deceive law enforcement and automatic face recognition systems is also plausible. Therefore, it is important to guard biometrics systems against such realistic presentation attacks. This paper introduces the first-of-its-kind silicone mask attack database which contains 130 real and attacked videos to facilitate research in developing presentation attack detection algorithms for this challenging scenario. Along with silicone mask, there are several other presentation attack instruments that are explored in literature. The next contribution of this research is a novel multilevel deep dictionary learning-based presentation attack detection algorithm that can discern different kinds of attacks. An efficient greedy layer by layer training approach is formulated to learn the deep dictionaries followed by SVM to classify an input sample as genuine or attacked. Experimental are performed on the proposed SMAD database, some samples with real world silicone mask attacks, and four existing presentation attack databases, namely, replay-attack, CASIA-FASD, 3DMAD, and UVAD. The results show that the proposed algorithm yields better performance compared with state-of-the-art algorithms, in both intra-database and cross-database experiments.

145 citations


Cites background or methods from "Face anti-spoofing with multifeatur..."

  • ...for the SMAD and performance is compared with two existing algorithms [25], [54]....

    [...]

  • ...For comparison, eight recent and stateof-the-art algorithms ( [13], [54], [55], [56], [57], [58], [25]) are selected and the results are reported directly from the published papers, except in few cases as marked in Table VI....

    [...]

  • ...Many algorithms utilize features which may be heavily pertinent to the kind of attack being detected, for instance, motion [15]–[21], texture [22]–[25], reflectance properties [26], [27], or image quality [28]....

    [...]

  • ...We have implemented an existing algorithm [25] for performance comparison and Table VII shows the HTER values of the proposed and existing algorithms....

    [...]

References
More filters
Proceedings ArticleDOI
Zhiwei Zhang1, Junjie Yan1, Sifei Liu1, Zhen Lei1, Dong Yi1, Stan Z. Li1 
06 Aug 2012
TL;DR: A face antispoofing database which covers a diverse range of potential attack variations, and a baseline algorithm is given for comparison, which explores the high frequency information in the facial region to determine the liveness.
Abstract: Face antispoofing has now attracted intensive attention, aiming to assure the reliability of face biometrics. We notice that currently most of face antispoofing databases focus on data with little variations, which may limit the generalization performance of trained models since potential attacks in real world are probably more complex. In this paper we release a face antispoofing database which covers a diverse range of potential attack variations. Specifically, the database contains 50 genuine subjects, and fake faces are made from the high quality records of the genuine faces. Three imaging qualities are considered, namely the low quality, normal quality and high quality. Three fake face attacks are implemented, which include warped photo attack, cut photo attack and video attack. Therefore each subject contains 12 videos (3 genuine and 9 fake), and the final database contains 600 video clips. Test protocol is provided, which consists of 7 scenarios for a thorough evaluation from all possible aspects. A baseline algorithm is also given for comparison, which explores the high frequency information in the facial region to determine the liveness. We hope such a database can serve as an evaluation platform for future researches in the literature.

680 citations


"Face anti-spoofing with multifeatur..." refers background or methods in this paper

  • ...• The CASIA-FASD dataset (CASIA) [21] consists of 600 videos corresponding to 50 subjects, separated as 240 videos in training and 360 videos in testing....

    [...]

  • ...Similarly, at the Inter Feature Fusion stage, the correlation of 0.51, 0.62, and 0.66 is observed for CASIA, MSU, and 3DMAD datasets, respectively....

    [...]

  • ...For CASIA, the improvement is relatively smaller (from 16.80 to 9.81%)....

    [...]

  • ...MSU dataset contains a higher fraction of replay attack videos compared to CASIA....

    [...]

  • ...The face anti-spoofing problem is extensively studied in literature, particularly with the introduction of Print Attack dataset [1], Replay Attack dataset [5], CASIA-FASD spoofing dataset [21], 3DMAD database [7], and MSU mobile face spoofing database [20]....

    [...]

Proceedings ArticleDOI
TL;DR: This work presents a novel approach based on analyzing facial image textures for detecting whether there is a live person in front of the camera or a face print, and analyzes the texture of the facial images using multi-scale local binary patterns (LBP).
Abstract: Current face biometric systems are vulnerable to spoofing attacks. A spoofing attack occurs when a person tries to masquerade as someone else by falsifying data and thereby gaining illegitimate access. Inspired by image quality assessment, characterization of printing artifacts, and differences in light reflection, we propose to approach the problem of spoofing detection from texture analysis point of view. Indeed, face prints usually contain printing quality defects that can be well detected using texture features. Hence, we present a novel approach based on analyzing facial image textures for detecting whether there is a live person in front of the camera or a face print. The proposed approach analyzes the texture of the facial images using multi-scale local binary patterns (LBP). Compared to many previous works, our proposed approach is robust, computationally fast and does not require user-cooperation. In addition, the texture features that are used for spoofing detection can also be used for face recognition. This provides a unique feature space for coupling spoofing detection and face recognition. Extensive experimental analysis on a publicly available database showed excellent results compared to existing works.

628 citations


Additional excerpts

  • ...As opposed to Määttä et al.[13] that computes overlapping local histograms of LBPu28,1, resulting in a feature vector of size 833; multi-LBP computes global histograms at three scales, thereby resulting in a descriptor of size 361 (i.e. 59+59+243)....

    [...]

  • ...As opposed to Määttä et al.[13] that computes overlapping local histograms of LBP 8,1, resulting in a feature vector of size 833; multi-LBP computes global histograms at three scales, thereby resulting in a descriptor of size 361 (i....

    [...]

Proceedings ArticleDOI
26 Dec 2007
TL;DR: A real-time liveness detection approach against photograph spoofing in face recognition, by recognizing spontaneous eyeblinks, which is a non-intrusive manner, which outperforms the cascaded Adaboost and HMM in task of eyeblink detection.
Abstract: We present a real-time liveness detection approach against photograph spoofing in face recognition, by recognizing spontaneous eyeblinks, which is a non-intrusive manner. The approach requires no extra hardware except for a generic webcamera. Eyeblink sequences often have a complex underlying structure. We formulate blink detection as inference in an undirected conditional graphical framework, and are able to learn a compact and efficient observation and transition potentials from data. For purpose of quick and accurate recognition of the blink behavior, eye closity, an easily-computed discriminative measure derived from the adaptive boosting algorithm, is developed, and then smoothly embedded into the conditional model. An extensive set of experiments are presented to show effectiveness of our approach and how it outperforms the cascaded Adaboost and HMM in task of eyeblink detection.

611 citations


"Face anti-spoofing with multifeatur..." refers background in this paper

  • ...In contrast, temporal evidence techniques encode spatial and temporal evidence across videos for cues such as signs of vitality [16], for spoofing detection....

    [...]

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper proposes to represent each frame of a video using a histogram of oriented optical flow (HOOF) and to recognize human actions by classifying HOOF time-series, and proposes a generalization of the Binet-Cauchy kernels to nonlinear dynamical systems (NLDS) whose output lives in a non-Euclidean space.
Abstract: System theoretic approaches to action recognition model the dynamics of a scene with linear dynamical systems (LDSs) and perform classification using metrics on the space of LDSs, e.g. Binet-Cauchy kernels. However, such approaches are only applicable to time series data living in a Euclidean space, e.g. joint trajectories extracted from motion capture data or feature point trajectories extracted from video. Much of the success of recent object recognition techniques relies on the use of more complex feature descriptors, such as SIFT descriptors or HOG descriptors, which are essentially histograms. Since histograms live in a non-Euclidean space, we can no longer model their temporal evolution with LDSs, nor can we classify them using a metric for LDSs. In this paper, we propose to represent each frame of a video using a histogram of oriented optical flow (HOOF) and to recognize human actions by classifying HOOF time-series. For this purpose, we propose a generalization of the Binet-Cauchy kernels to nonlinear dynamical systems (NLDS) whose output lives in a non-Euclidean space, e.g. the space of histograms. This can be achieved by using kernels defined on the original non-Euclidean space, leading to a well-defined metric for NLDSs. We use these kernels for the classification of actions in video sequences using (HOOF) as the output of the NLDS. We evaluate our approach to recognition of human actions in several scenarios and achieve encouraging results.

610 citations

Journal ArticleDOI
TL;DR: This work assumes a very limited knowledge about biometric spoofing at the sensor to derive outstanding spoofing detection systems for iris, face, and fingerprint modalities based on two deep learning approaches based on convolutional networks.
Abstract: Biometrics systems have significantly improved person identification and authentication, playing an important role in personal, national, and global security. However, these systems might be deceived (or spoofed) and, despite the recent advances in spoofing detection, current solutions often rely on domain knowledge, specific biometric reading systems, and attack types. We assume a very limited knowledge about biometric spoofing at the sensor to derive outstanding spoofing detection systems for iris, face, and fingerprint modalities based on two deep learning approaches. The first approach consists of learning suitable convolutional network architectures for each domain, whereas the second approach focuses on learning the weights of the network via back propagation. We consider nine biometric spoofing benchmarks—each one containing real and fake samples of a given biometric modality and attack type—and learn deep representations for each benchmark by combining and contrasting the two learning approaches. This strategy not only provides better comprehension of how these approaches interplay, but also creates systems that exceed the best known results in eight out of the nine benchmarks. The results strongly indicate that spoofing detection systems based on convolutional networks can be robust to attacks already known and possibly adapted, with little effort, to image-based attacks that are yet to come.

353 citations