scispace - formally typeset
Open AccessProceedings ArticleDOI

Face recognition in unconstrained videos with matched background similarity

Reads0
Chats0
TLDR
A comprehensive database of labeled videos of faces in challenging, uncontrolled conditions, the ‘YouTube Faces’ database, along with benchmark, pair-matching tests are presented and a novel set-to-set similarity measure, the Matched Background Similarity (MBGS), is described.
Abstract
Recognizing faces in unconstrained videos is a task of mounting importance. While obviously related to face recognition in still images, it has its own unique characteristics and algorithmic requirements. Over the years several methods have been suggested for this problem, and a few benchmark data sets have been assembled to facilitate its study. However, there is a sizable gap between the actual application needs and the current state of the art. In this paper we make the following contributions. (a) We present a comprehensive database of labeled videos of faces in challenging, uncontrolled conditions (i.e., ‘in the wild’), the ‘YouTube Faces’ database, along with benchmark, pair-matching tests1. (b) We employ our benchmark to survey and compare the performance of a large variety of existing video face recognition techniques. Finally, (c) we describe a novel set-to-set similarity measure, the Matched Background Similarity (MBGS). This similarity is shown to considerably improve performance on the benchmark tests.

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI

FaceNet: A unified embedding for face recognition and clustering

TL;DR: A system that directly learns a mapping from face images to a compact Euclidean space where distances directly correspond to a measure offace similarity, and achieves state-of-the-art face recognition performance using only 128-bytes perface.
Proceedings ArticleDOI

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

TL;DR: This work revisits both the alignment step and the representation step by employing explicit 3D face modeling in order to apply a piecewise affine transformation, and derive a face representation from a nine-layer deep neural network.
Proceedings ArticleDOI

Deep face recognition

TL;DR: It is shown how a very large scale dataset can be assembled by a combination of automation and human in the loop, and the trade off between data purity and time is discussed.
Proceedings ArticleDOI

FaceNet: A Unified Embedding for Face Recognition and Clustering

TL;DR: FaceNet as discussed by the authors uses a deep convolutional network trained to directly optimize the embedding itself, rather than an intermediate bottleneck layer as in previous deep learning approaches, and achieves state-of-the-art face recognition performance using only 128 bytes per face.
Proceedings ArticleDOI

ArcFace: Additive Angular Margin Loss for Deep Face Recognition

TL;DR: This paper presents arguably the most extensive experimental evaluation against all recent state-of-the-art face recognition methods on ten face recognition benchmarks, and shows that ArcFace consistently outperforms the state of the art and can be easily implemented with negligible computational overhead.
References
More filters
Journal ArticleDOI

Robust Real-Time Face Detection

TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Journal ArticleDOI

Robust Face Recognition via Sparse Representation

TL;DR: This work considers the problem of automatically recognizing human faces from frontal views with varying expression and illumination, as well as occlusion and disguise, and proposes a general classification algorithm for (image-based) object recognition based on a sparse representation computed by C1-minimization.
Journal ArticleDOI

A comparative study of texture measures with classification based on featured distributions

TL;DR: This paper evaluates the performance both of some texture measures which have been successfully used in various applications and of some new promising approaches proposed recently.

Labeled Faces in the Wild: A Database forStudying Face Recognition in Unconstrained Environments

TL;DR: The database contains labeled face photographs spanning the range of conditions typically encountered in everyday life, and exhibits “natural” variability in factors such as pose, lighting, race, accessories, occlusions, and background.
Journal ArticleDOI

Face Description with Local Binary Patterns: Application to Face Recognition

TL;DR: This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features that is assessed in the face recognition problem under different challenges.