scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Facile Construction of a Hollow In2S3/Polymeric Carbon Nitride Heterojunction for Efficient Visible-Light-Driven CO2 Reduction

23 Apr 2021-ACS Sustainable Chemistry & Engineering (American Chemical Society (ACS))-Vol. 9, Iss: 17, pp 5942-5951
TL;DR: In this article, a hollow In₂S₃/polymeric carbon nitride (IS/CN) heterojunction was prepared via electrostatic self-assembly and in situ sulfidation under solvothermal conditions.
Abstract: The development of high-efficiency photocatalysts is of great importance to realize robust solar-driven CO₂ conversion; however, the low carrier separation efficiency and poor light absorption ability usually limit the performance of the photocatalysts. Herein, a hollow In₂S₃/polymeric carbon nitride (IS/CN) heterojunction was prepared via electrostatic self-assembly and in situ sulfidation under solvothermal conditions. The intimate interfacial contact between the IS and CN facilitates the construction of an effective heterojunction, as demonstrated by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The optimized IS/CN-5 sample exhibits a high CO evolution rate of 483.4 μmol g–¹ h–¹, which is 99 and 6 times as high as that of IS and CN, respectively. The improved charge separation and transfer efficiency, the hollow nanotube structure, and the enhanced CO₂ adsorption ability are the reasons for the excellent photocatalytic activity. Besides, a possible photocatalytic mechanism of CO₂ reduction by the IS/CN heterojunction was proposed on the basis of the band structures. This work provides an effective and facile strategy to construct hollow semiconductor heterojunctions for photocatalytic applications.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper , an S-scheme heterojunction with tunable oxygen vacancies (Vo) via in-situ growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets assisted by nitric acid for efficient CO2 photoreduction was reported.

22 citations

Journal ArticleDOI
TL;DR: In this article, an S-scheme heterojunction with tunable oxygen vacancies (Vo) via in-situ growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets assisted by nitric acid for efficient CO2 photoreduction is reported.

22 citations

Journal ArticleDOI
TL;DR: In this paper , the photo-induced carriers transfer mechanism of the S-scheme Bi2WO6/CoIn2S4 heterojunction was clarified by band structure analysis, ultraviolet photoelectron spectrometer (UPS), electron spin resonance (ESR) and radical trapping experiments.

18 citations

Journal ArticleDOI
TL;DR: In this paper, a new supramolecular assembly family as reactants was designed to synthesize highly photoactive porous polymeric carbon nitride (CN), based on a melem-constructed honeycomb, coupled with the insertion of small triazine analogs.
Abstract: We design a new supramolecular assembly family as reactants to synthesize highly-photoactive porous polymeric carbon nitride (CN), based on a melem-constructed honeycomb, coupled with the insertion of small triazine analogs. The inclusion of small molecules into the melem-based hexameric rings leads to a highly porous CN with controlled electronic, optical, and catalytic properties, as proven by experimental and theoretical studies. The best-performing photocatalyst demonstrates state-of-the-art activity for hydrogen evolution reaction (HER, H2 generation rate of 8075 μmol h−1 g−1), and CO2 reduction (CO2RR, CO production of 1125 μmol g−1 within 3 h) with high quantum yield efficiencies and excellent stability, owing to the enhanced charge separation and light absorption, appropriate energy bands position, and high specific surface area.

15 citations

Journal ArticleDOI
TL;DR: In this article, MoO3-x quantum dots (QDs) immobilized on acid modified palygorskite (H-Pal) nanocomposite was prepared as powder photocatalyst for CO2 conversion.

10 citations

References
More filters
Journal ArticleDOI
07 Jul 1972-Nature
TL;DR: Water photolysis is investigated by exploiting the fact that water is transparent to visible light and cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm.
Abstract: ALTHOUGH the possibility of water photolysis has been investigated by many workers, a useful method has only now been developed. Because water is transparent to visible light it cannot be decomposed directly, but only by radiation with wavelengths shorter than 190 nm (ref. 1).

27,819 citations

Journal ArticleDOI
TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Abstract: The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.

9,751 citations

Journal ArticleDOI
TL;DR: Reaction Mechanism, Synthesis of Urea and Urethane Derivatives, and Alcohol Homologation 2382 10.1.
Abstract: 4.3. Reaction Mechanism 2373 4.4. Asymmetric Synthesis 2374 4.5. Outlook 2374 5. Alternating Polymerization of Oxiranes and CO2 2374 5.1. Reaction Outlines 2374 5.2. Catalyst 2376 5.3. Asymmetric Polymerization 2377 5.4. Immobilized Catalysts 2377 6. Synthesis of Urea and Urethane Derivatives 2378 7. Synthesis of Carboxylic Acid 2379 8. Synthesis of Esters and Lactones 2380 9. Synthesis of Isocyanates 2382 10. Hydrogenation and Hydroformylation, and Alcohol Homologation 2382

3,203 citations

Journal ArticleDOI
01 Feb 1979-Nature
TL;DR: In this paper, the photoelectrocatalytic reduction of carbon dioxide to form organic compounds such as formic acid, formaldeyde, methyl alcohol and methane, in the presence of photosensitive semiconductor powders suspended in water as catalysts, is described.
Abstract: WE report here the photoelectrocatalytic reduction of carbon dioxide to form organic compounds such as formic acid, formaldeyde, methyl alcohol and methane, in the presence of photosensitive semiconductor powders suspended in water as catalysts. Photocatalytic reaction kinetics were elucidated by reference to the theory of charge transfer at photoexcited semiconductors.

2,362 citations

Journal ArticleDOI
11 Sep 2015-Science
TL;DR: Modular optimization of covalent organic frameworks (COFs) is reported, in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO.
Abstract: Conversion of carbon dioxide (CO2) to carbon monoxide (CO) and other value-added carbon products is an important challenge for clean energy research. Here we report modular optimization of covalent organic frameworks (COFs), in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO. The catalysts exhibit high Faradaic efficiency (90%) and turnover numbers (up to 290,000, with initial turnover frequency of 9400 hour(-1)) at pH 7 with an overpotential of -0.55 volts, equivalent to a 26-fold improvement in activity compared with the molecular cobalt complex, with no degradation over 24 hours. X-ray absorption data reveal the influence of the COF environment on the electronic structure of the catalytic cobalt centers.

1,844 citations