scispace - formally typeset
Search or ask a question
Journal ArticleDOI

FactSheets: Increasing trust in AI services through supplier's declarations of conformity

TL;DR: This paper envisiones an SDoC for AI services to contain purpose, performance, safety, security, and provenance information to be completed and voluntarily released by AI service providers for examination by consumers.
Abstract: Accuracy is an important concern for suppliers of artificial intelligence (AI) services, but considerations beyond accuracy, such as safety (which includes fairness and explainability), security, and provenance, are also critical elements to engender consumers’ trust in a service. Many industries use transparent, standardized, but often not legally required documents called supplier's declarations of conformity (SDoCs) to describe the lineage of a product along with the safety and performance testing it has undergone. SDoCs may be considered multidimensional fact sheets that capture and quantify various aspects of the product and its development to make it worthy of consumers’ trust. In this article, inspired by this practice, we propose FactSheets to help increase trust in AI services. We envision such documents to contain purpose, performance, safety, security, and provenance information to be completed by AI service providers for examination by consumers. We suggest a comprehensive set of declaration items tailored to AI in the Appendix of this article.
Citations
More filters
Posted Content
TL;DR: This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems and their associated development processes, with a focus on providing evidence about the safety, security, fairness, and privacy protection of AI systems.
Abstract: With the recent wave of progress in artificial intelligence (AI) has come a growing awareness of the large-scale impacts of AI systems, and recognition that existing regulations and norms in industry and academia are insufficient to ensure responsible AI development. In order for AI developers to earn trust from system users, customers, civil society, governments, and other stakeholders that they are building AI responsibly, they will need to make verifiable claims to which they can be held accountable. Those outside of a given organization also need effective means of scrutinizing such claims. This report suggests various steps that different stakeholders can take to improve the verifiability of claims made about AI systems and their associated development processes, with a focus on providing evidence about the safety, security, fairness, and privacy protection of AI systems. We analyze ten mechanisms for this purpose--spanning institutions, software, and hardware--and make recommendations aimed at implementing, exploring, or improving those mechanisms.

191 citations

Proceedings ArticleDOI
03 Mar 2021
TL;DR: A rigorous framework for dataset development transparency that supports decision-making and accountability is introduced, which uses the cyclical, infrastructural and engineering nature of dataset development to draw on best practices from the software development lifecycle.
Abstract: Datasets that power machine learning are often used, shared, and reused with little visibility into the processes of deliberation that led to their creation. As artificial intelligence systems are increasingly used in high-stakes tasks, system development and deployment practices must be adapted to address the very real consequences of how model development data is constructed and used in practice. This includes greater transparency about data, and accountability for decisions made when developing it. In this paper, we introduce a rigorous framework for dataset development transparency that supports decision-making and accountability. The framework uses the cyclical, infrastructural and engineering nature of dataset development to draw on best practices from the software development lifecycle. Each stage of the data development lifecycle yields documents that facilitate improved communication and decision-making, as well as drawing attention to the value and necessity of careful data work. The proposed framework makes visible the often overlooked work and decisions that go into dataset creation, a critical step in closing the accountability gap in artificial intelligence and a critical/necessary resource aligned with recent work on auditing processes.

169 citations


Cites background from "FactSheets: Increasing trust in AI ..."

  • ...tion outlined above plays a critical role in defining the contracts between different components, helping product developers, maintainers and end-users determine how much trust to place in the system [8]. Additionally, in online “continuous training, continuous serving" systems, the concept of a “dataset" as a static artifact (or even a versioned artefact) breaks down. Instead, datasets are...

    [...]

Proceedings ArticleDOI
TL;DR: In this article, a taxonomy and a set of descriptors that can be used to characterise and systematically assess explainable systems along five key dimensions: functional, operational, usability, safety and validation.
Abstract: Explanations in Machine Learning come in many forms, but a consensus regarding their desired properties is yet to emerge. In this paper we introduce a taxonomy and a set of descriptors that can be used to characterise and systematically assess explainable systems along five key dimensions: functional, operational, usability, safety and validation. In order to design a comprehensive and representative taxonomy and associated descriptors we surveyed the eXplainable Artificial Intelligence literature, extracting the criteria and desiderata that other authors have proposed or implicitly used in their research. The survey includes papers introducing new explainability algorithms to see what criteria are used to guide their development and how these algorithms are evaluated, as well as papers proposing such criteria from both computer science and social science perspectives. This novel framework allows to systematically compare and contrast explainability approaches, not just to better understand their capabilities but also to identify discrepancies between their theoretical qualities and properties of their implementations. We developed an operationalisation of the framework in the form of Explainability Fact Sheets, which enable researchers and practitioners alike to quickly grasp capabilities and limitations of a particular explainable method. When used as a Work Sheet, our taxonomy can guide the development of new explainability approaches by aiding in their critical evaluation along the five proposed dimensions.

142 citations

Journal ArticleDOI
TL;DR: The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative concerns, and to offer actionable guidance for the governance of the design, development and deployment of algorithms.
Abstract: Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016 (Mittelstadt et al. Big Data Soc 3(2), 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative concerns, and to offer actionable guidance for the governance of the design, development and deployment of algorithms.

137 citations

Posted Content
TL;DR: This work discusses a model of trust inspired by, but not identical to, interpersonal trust as defined by sociologists, and incorporates a formalization of 'contractual trust', such that trust between a user and an AI model is trust that some implicit or explicit contract will hold.
Abstract: Trust is a central component of the interaction between people and AI, in that 'incorrect' levels of trust may cause misuse, abuse or disuse of the technology. But what, precisely, is the nature of trust in AI? What are the prerequisites and goals of the cognitive mechanism of trust, and how can we promote them, or assess whether they are being satisfied in a given interaction? This work aims to answer these questions. We discuss a model of trust inspired by, but not identical to, sociology's interpersonal trust (i.e., trust between people). This model rests on two key properties of the vulnerability of the user and the ability to anticipate the impact of the AI model's decisions. We incorporate a formalization of 'contractual trust', such that trust between a user and an AI is trust that some implicit or explicit contract will hold, and a formalization of 'trustworthiness' (which detaches from the notion of trustworthiness in sociology), and with it concepts of 'warranted' and 'unwarranted' trust. We then present the possible causes of warranted trust as intrinsic reasoning and extrinsic behavior, and discuss how to design trustworthy AI, how to evaluate whether trust has manifested, and whether it is warranted. Finally, we elucidate the connection between trust and XAI using our formalization.

133 citations