scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fake News Detection on Social Media: A Data Mining Perspective

01 Sep 2017-Sigkdd Explorations (ACM)-Vol. 19, Iss: 1, pp 22-36
TL;DR: Wang et al. as discussed by the authors presented a comprehensive review of detecting fake news on social media, including fake news characterizations on psychology and social theories, existing algorithms from a data mining perspective, evaluation metrics and representative datasets.
Abstract: Social media for news consumption is a double-edged sword. On the one hand, its low cost, easy access, and rapid dissemination of information lead people to seek out and consume news from social media. On the other hand, it enables the wide spread of \fake news", i.e., low quality news with intentionally false information. The extensive spread of fake news has the potential for extremely negative impacts on individuals and society. Therefore, fake news detection on social media has recently become an emerging research that is attracting tremendous attention. Fake news detection on social media presents unique characteristics and challenges that make existing detection algorithms from traditional news media ine ective or not applicable. First, fake news is intentionally written to mislead readers to believe false information, which makes it difficult and nontrivial to detect based on news content; therefore, we need to include auxiliary information, such as user social engagements on social media, to help make a determination. Second, exploiting this auxiliary information is challenging in and of itself as users' social engagements with fake news produce data that is big, incomplete, unstructured, and noisy. Because the issue of fake news detection on social media is both challenging and relevant, we conducted this survey to further facilitate research on the problem. In this survey, we present a comprehensive review of detecting fake news on social media, including fake news characterizations on psychology and social theories, existing algorithms from a data mining perspective, evaluation metrics and representative datasets. We also discuss related research areas, open problems, and future research directions for fake news detection on social media.
Citations
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors developed a clickbait video detector (CVD) scheme, which leverages to learn three sets of latent features based on user profiles, video content, and human consensus.
Abstract: Clickbait is one of the form of false content, purposely designed to attract the user’s attention and make them curious to follow the link and read, view, or listen to the attached content. The teaser aim behind this is to exploit the curiosity gap by giving information within the short statement. Still, the given statement is not sufficient enough to satisfy the curiosity without clicking through the linked content and lure the user to get into the respective page via playing with human psychology and degrades the user experience. To counter this problem, we develop a Clickbait Video Detector (CVD) scheme. The scheme leverages to learn three sets of latent features based on User Profiling, Video-Content, and Human Consensus, these are further used to retrieve cognitive evidence for the detection of clickbait videos on YouTube. The first step is to extract audio from the videos, which is further transformed to textual data, and later on, it is utilized for the extraction of video content-based features. Secondly, the comments are analyzed, and features are extracted based on human responses/reactions over the posted content. Lastly, user profile based features are extracted. Finally, all these features are fed into the classifier. The proposed method is tested on the publicly available fake video corpus [FVC], [FVC-2018] dataset, and a self-generated misleading video dataset [MVD]. The achieved result is compared with other state-of-the-art methods and demonstrates superior performance.

28 citations

Book ChapterDOI
28 Aug 2019
TL;DR: This model is built on BERT, a pre-trained model with a more powerful feature extractor Transformer instead of CNN or RNN and treats fake news detection as fine-grained multiple-classification task and uses two similar sub-models to identify different granularity labels separately.
Abstract: Online social media promotes the development of the news industry and make it easy for everyone to obtain the latest news. Meanwhile, the circumstances get worse because of fake news. Fake news is flooding and become a serious threat which may cause high societal and economic losses, making fake news detection important. Unlike traditional one, news on social media tends to be short and misleading, which is more confusing to identify. On the other hand, fake news may contain parts of the facts and parts of the incorrect contents in one statement, which is not so clear and simple to classify. Hence, we propose a two-stage model to deal with the difficulties. Our model is built on BERT, a pre-trained model with a more powerful feature extractor Transformer instead of CNN or RNN. Besides, some accessible information is used to extend features and calculate attention weights. At last, inspired by fine-grained sentiment analysis, we treat fake news detection as fine-grained multiple-classification task and use two similar sub-models to identify different granularity labels separately. We evaluate our model on a real-world benchmark dataset. The experimental results demonstrate its effectiveness in fine-grained fake news detection and its superior performance to the baselines and other competitive approaches.

28 citations

Posted Content
TL;DR: In this article, the authors focus on the automatic detection of misinformation in YouTube videos and select prostate cancer videos as their entry point to tackle this problem, and explore the use of linguistic, acoustic, and user engagement features for the development of classification models to identify misinformation.
Abstract: Recent years have witnessed a significant increase in the online sharing of medical information, with videos representing a large fraction of such online sources. Previous studies have however shown that more than half of the health-related videos on platforms such as YouTube contain misleading information and biases. Hence, it is crucial to build computational tools that can help evaluate the quality of these videos so that users can obtain accurate information to help inform their decisions. In this study, we focus on the automatic detection of misinformation in YouTube videos. We select prostate cancer videos as our entry point to tackle this problem. The contribution of this paper is twofold. First, we introduce a new dataset consisting of 250 videos related to prostate cancer manually annotated for misinformation. Second, we explore the use of linguistic, acoustic, and user engagement features for the development of classification models to identify misinformation. Using a series of ablation experiments, we show that we can build automatic models with accuracies of up to 74%, corresponding to a 76.5% precision and 73.2% recall for misinformative instances.

28 citations

Proceedings ArticleDOI
13 May 2019
TL;DR: This paper proposes a hierarchical representation of these classes, which combines the agree, disagree, and discuss classes under a new related class, and proposes a two-layer neural network that learns from this hierarchical representation and controls the error propagation between the two layers using the Maximum Mean Discrepancy regularizer.
Abstract: Stance detection has gained increasing interest from the research community due to its importance for fake news detection. The goal of stance detection is to categorize an overall position of a subject towards an object into one of the four classes: agree, disagree, discuss, and unrelated. One of the major problems faced by current machine learning models used for stance detection is caused by a severe class imbalance among these classes. Hence, most models fail to correctly classify instances that fall into minority classes. In this paper, we address this problem by proposing a hierarchical representation of these classes, which combines the agree, disagree, and discuss classes under a new related class. Further, we propose a two-layer neural network that learns from this hierarchical representation and controls the error propagation between the two layers using the Maximum Mean Discrepancy regularizer. Compared with conventional four-way classifiers, this model has two advantages: (1) the hierarchical architecture mitigates the class imbalance problem; (2) the regularization makes the model to better discern between the related and unrelated stances. An extensive experimentation demonstrates state-of-the-art accuracy performance of the proposed model for stance detection.

28 citations

Proceedings ArticleDOI
TL;DR: This work proposes a topic-agnostic (TAG) classification strategy that uses linguistic and web-markup features to identify fake news pages and reports experimental results which show that this approach attains high accuracy in the identification of fake news, even as topics evolve over time.
Abstract: Fake news and misinformation have been increasingly used to manipulate popular opinion and influence political processes. To better understand fake news, how they are propagated, and how to counter their effect, it is necessary to first identify them. Recently, approaches have been proposed to automatically classify articles as fake based on their content. An important challenge for these approaches comes from the dynamic nature of news: as new political events are covered, topics and discourse constantly change and thus, a classifier trained using content from articles published at a given time is likely to become ineffective in the future. To address this challenge, we propose a topic-agnostic (TAG) classification strategy that uses linguistic and web-markup features to identify fake news pages. We report experimental results using multiple data sets which show that our approach attains high accuracy in the identification of fake news, even as topics evolve over time.

27 citations

References
More filters
Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations

Book ChapterDOI
TL;DR: In this paper, the authors present a critique of expected utility theory as a descriptive model of decision making under risk, and develop an alternative model, called prospect theory, in which value is assigned to gains and losses rather than to final assets and in which probabilities are replaced by decision weights.
Abstract: This paper presents a critique of expected utility theory as a descriptive model of decision making under risk, and develops an alternative model, called prospect theory. Choices among risky prospects exhibit several pervasive effects that are inconsistent with the basic tenets of utility theory. In particular, people underweight outcomes that are merely probable in comparison with outcomes that are obtained with certainty. This tendency, called the certainty effect, contributes to risk aversion in choices involving sure gains and to risk seeking in choices involving sure losses. In addition, people generally discard components that are shared by all prospects under consideration. This tendency, called the isolation effect, leads to inconsistent preferences when the same choice is presented in different forms. An alternative theory of choice is developed, in which value is assigned to gains and losses rather than to final assets and in which probabilities are replaced by decision weights. The value function is normally concave for gains, commonly convex for losses, and is generally steeper for losses than for gains. Decision weights are generally lower than the corresponding probabilities, except in the range of low prob- abilities. Overweighting of low probabilities may contribute to the attractiveness of both insurance and gambling. EXPECTED UTILITY THEORY has dominated the analysis of decision making under risk. It has been generally accepted as a normative model of rational choice (24), and widely applied as a descriptive model of economic behavior, e.g. (15, 4). Thus, it is assumed that all reasonable people would wish to obey the axioms of the theory (47, 36), and that most people actually do, most of the time. The present paper describes several classes of choice problems in which preferences systematically violate the axioms of expected utility theory. In the light of these observations we argue that utility theory, as it is commonly interpreted and applied, is not an adequate descriptive model and we propose an alternative account of choice under risk. 2. CRITIQUE

35,067 citations

Book ChapterDOI
09 Jan 2004
TL;DR: A theory of intergroup conflict and some preliminary data relating to the theory is presented in this article. But the analysis is limited to the case where the salient dimensions of the intergroup differentiation are those involving scarce resources.
Abstract: This chapter presents an outline of a theory of intergroup conflict and some preliminary data relating to the theory. Much of the work on the social psychology of intergroup relations has focused on patterns of individual prejudices and discrimination and on the motivational sequences of interpersonal interaction. The intensity of explicit intergroup conflicts of interests is closely related in human cultures to the degree of opprobrium attached to the notion of "renegade" or "traitor." The basic and highly reliable finding is that the trivial, ad hoc intergroup categorization leads to in-group favoritism and discrimination against the out-group. Many orthodox definitions of "social groups" are unduly restrictive when applied to the context of intergroup relations. The equation of social competition and intergroup conflict rests on the assumptions concerning an "ideal type" of social stratification in which the salient dimensions of intergroup differentiation are those involving scarce resources.

14,812 citations

Journal ArticleDOI
TL;DR: Cumulative prospect theory as discussed by the authors applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses, and two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting function.
Abstract: We develop a new version of prospect theory that employs cumulative rather than separable decision weights and extends the theory in several respects. This version, called cumulative prospect theory, applies to uncertain as well as to risky prospects with any number of outcomes, and it allows different weighting functions for gains and for losses. Two principles, diminishing sensitivity and loss aversion, are invoked to explain the characteristic curvature of the value function and the weighting functions. A review of the experimental evidence and the results of a new experiment confirm a distinctive fourfold pattern of risk attitudes: risk aversion for gains and risk seeking for losses of high probability; risk seeking for gains and risk aversion for losses of low probability. Expected utility theory reigned for several decades as the dominant normative and descriptive model of decision making under uncertainty, but it has come under serious question in recent years. There is now general agreement that the theory does not provide an adequate description of individual choice: a substantial body of evidence shows that decision makers systematically violate its basic tenets. Many alternative models have been proposed in response to this empirical challenge (for reviews, see Camerer, 1989; Fishburn, 1988; Machina, 1987). Some time ago we presented a model of choice, called prospect theory, which explained the major violations of expected utility theory in choices between risky prospects with a small number of outcomes (Kahneman and Tversky, 1979; Tversky and Kahneman, 1986). The key elements of this theory are 1) a value function that is concave for gains, convex for losses, and steeper for losses than for gains,

13,433 citations

Trending Questions (1)
Issue of fake news

The paper discusses the issue of fake news on social media and its potential negative impacts on individuals and society.