scispace - formally typeset
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

01 Jul 2009-Bioinformatics (Oxford University Press)-Vol. 25, Iss: 14, pp 1754-1760
TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.

...read more

Abstract: Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ~10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: [email protected]

...read more

Topics: Hybrid genome assembly (54%), Sequence assembly (53%), 2 base encoding (52%) ...read more
Citations
More filters

Journal ArticleDOI
01 Apr 2012-Nature Methods
TL;DR: Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

...read more

Abstract: As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.

...read more

27,973 citations


Journal ArticleDOI
Anthony Bolger1, Marc Lohse1, Bjoern Usadel1Institutions (1)
01 Aug 2014-Bioinformatics
TL;DR: Timmomatic is developed as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data and is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested.

...read more

Abstract: Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: ed.nehcaa-htwr.1oib@ledasu Supplementary information: Supplementary data are available at Bioinformatics online.

...read more

26,464 citations


Journal ArticleDOI
Aaron McKenna1, Matthew Hanna, Eric Banks, Andrey Sivachenko  +7 moreInstitutions (1)
01 Sep 2010-Genome Research
TL;DR: The GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

...read more

Abstract: Next-generation DNA sequencing (NGS) projects, such as the 1000 Genomes Project, are already revolutionizing our understanding of genetic variation among individuals. However, the massive data sets generated by NGS—the 1000 Genome pilot alone includes nearly five terabases—make writing feature-rich, efficient, and robust analysis tools difficult for even computationally sophisticated individuals. Indeed, many professionals are limited in the scope and the ease with which they can answer scientific questions by the complexity of accessing and manipulating the data produced by these machines. Here, we discuss our Genome Analysis Toolkit (GATK), a structured programming framework designed to ease the development of efficient and robust analysis tools for next-generation DNA sequencers using the functional programming philosophy of MapReduce. The GATK provides a small but rich set of data access patterns that encompass the majority of analysis tool needs. Separating specific analysis calculations from common data management infrastructure enables us to optimize the GATK framework for correctness, stability, and CPU and memory efficiency and to enable distributed and shared memory parallelization. We highlight the capabilities of the GATK by describing the implementation and application of robust, scale-tolerant tools like coverage calculators and single nucleotide polymorphism (SNP) calling. We conclude that the GATK programming framework enables developers and analysts to quickly and easily write efficient and robust NGS tools, many of which have already been incorporated into large-scale sequencing projects like the 1000 Genomes Project and The Cancer Genome Atlas.

...read more

16,404 citations


Cites background or methods from "Fast and accurate short read alignm..."

  • ...…for the Service Email Alerting click here.top right corner of the article or Receive free email alerts when new articles cite this article - sign up in the box at the http://genome.cshlp.org/subscriptions go to: Genome Research To subscribe to Copyright © 2010 by Cold Spring Harbor Laboratory Press...

    [...]

  • ...Many tools have been created to work with next-generation sequencer data, from read based aligners like MAQ (Li et al. 2008a), BWA (Li and Durbin 2009), and SOAP (Li et al. 2008b), to single nucleotide polymorphism and structural variation detection tools like BreakDancer (Chen et al. 2009),…...

    [...]

  • ...Many tools have been created to work with next-generation sequencer data, from read based aligners like MAQ (Li et al. 2008a), BWA (Li and Durbin 2009), and SOAP (Li et al. 2008b), to single nucleotide polymorphism and structural variation detection tools like BreakDancer (Chen et al. 2009), VarScan (Koboldt et al. 2009), and MAQ....

    [...]

  • ...…article cites 26 articles, 13 of which can be accessed free at: License Commons Creative http://creativecommons.org/licenses/by-nc/3.0/.described at a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as )....

    [...]

  • ...Bayesian estimation of the most likely genotype from next-generation DNA resequencing reads has already proven valuable (Li et al. 2008a,b; Li and Durbin 2009)....

    [...]


Journal ArticleDOI
Marcel Martin1Institutions (1)
02 May 2011-EMBnet.journal
TL;DR: The command-line tool cutadapt is developed, which supports 454, Illumina and SOLiD (color space) data, offers two adapter trimming algorithms, and has other useful features.

...read more

Abstract: When small RNA is sequenced on current sequencing machines, the resulting reads are usually longer than the RNA and therefore contain parts of the 3' adapter. That adapter must be found and removed error-tolerantly from each read before read mapping. Previous solutions are either hard to use or do not offer required features, in particular support for color space data. As an easy to use alternative, we developed the command-line tool cutadapt, which supports 454, Illumina and SOLiD (color space) data, offers two adapter trimming algorithms, and has other useful features. Cutadapt, including its MIT-licensed source code, is available for download at http://code.google.com/p/cutadapt/

...read more

13,576 citations


Journal ArticleDOI
Mark A. DePristo1, Eric Banks1, Ryan Poplin1, Kiran V. Garimella1  +19 moreInstitutions (3)
01 May 2011-Nature Genetics
TL;DR: A unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs is presented.

...read more

Abstract: Recent advances in sequencing technology make it possible to comprehensively catalogue genetic variation in population samples, creating a foundation for understanding human disease, ancestry and evolution. The amounts of raw data produced are prodigious and many computational steps are required to translate this output into high-quality variant calls. We present a unified analytic framework to discover and genotype variation among multiple samples simultaneously that achieves sensitive and specific results across five sequencing technologies and three distinct, canonical experimental designs. Our process includes (1) initial read mapping; (2) local realignment around indels; (3) base quality score recalibration; (4) SNP discovery and genotyping to find all potential variants; and (5) machine learning to separate true segregating variation from machine artifacts common to next-generation sequencing technologies. We discuss the application of these tools, instantiated in the Genome Analysis Toolkit (GATK), to deep whole-genome, whole-exome capture, and multi-sample low-pass (~4×) 1000 Genomes Project datasets.

...read more

8,715 citations


References
More filters

Journal ArticleDOI
TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.

...read more

Abstract: The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSIBLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.

...read more

66,744 citations


Journal ArticleDOI
Heng Li1, Bob Handsaker2, Alec Wysoker2, T. J. Fennell2  +5 moreInstitutions (4)
01 Aug 2009-Bioinformatics
Abstract: Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: [email protected]

...read more

35,747 citations


Journal ArticleDOI
04 Mar 2009-Genome Biology
TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.

...read more

Abstract: Bowtie is an ultrafast, memory-efficient alignment program for aligning short DNA sequence reads to large genomes. For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25 million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches. Multiple processor cores can be used simultaneously to achieve even greater alignment speeds. Bowtie is open source http://bowtie.cbcb.umd.edu.

...read more

18,079 citations


Journal ArticleDOI
William R. Pearson1, David J. LipmanInstitutions (1)
TL;DR: Three computer programs for comparisons of protein and DNA sequences can be used to search sequence data bases, evaluate similarity scores, and identify periodic structures based on local sequence similarity.

...read more

Abstract: We have developed three computer programs for comparisons of protein and DNA sequences. They can be used to search sequence data bases, evaluate similarity scores, and identify periodic structures based on local sequence similarity. The FASTA program is a more sensitive derivative of the FASTP program, which can be used to search protein or DNA sequence data bases and can compare a protein sequence to a DNA sequence data base by translating the DNA data base as it is searched. FASTA includes an additional step in the calculation of the initial pairwise similarity score that allows multiple regions of similarity to be joined to increase the score of related sequences. The RDF2 program can be used to evaluate the significance of similarity scores using a shuffling method that preserves local sequence composition. The LFASTA program can display all the regions of local similarity between two sequences with scores greater than a threshold, using the same scoring parameters and a similar alignment algorithm; these local similarities can be displayed as a "graphic matrix" plot or as individual alignments. In addition, these programs have been generalized to allow comparison of DNA or protein sequences based on a variety of alternative scoring matrices.

...read more

12,324 citations


Journal ArticleDOI
W. James Kent1Institutions (1)
01 Apr 2002-Genome Research
TL;DR: How BLAT was optimized is described, which is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences.

...read more

Abstract: Analyzing vertebrate genomes requires rapid mRNA/DNA and cross-species protein alignments A new tool, BLAT, is more accurate and 500 times faster than popular existing tools for mRNA/DNA alignments and 50 times faster for protein alignments at sensitivity settings typically used when comparing vertebrate sequences BLAT's speed stems from an index of all nonoverlapping K-mers in the genome This index fits inside the RAM of inexpensive computers, and need only be computed once for each genome assembly BLAT has several major stages It uses the index to find regions in the genome likely to be homologous to the query sequence It performs an alignment between homologous regions It stitches together these aligned regions (often exons) into larger alignments (typically genes) Finally, BLAT revisits small internal exons possibly missed at the first stage and adjusts large gap boundaries that have canonical splice sites where feasible This paper describes how BLAT was optimized Effects on speed and sensitivity are explored for various K-mer sizes, mismatch schemes, and number of required index matches BLAT is compared with other alignment programs on various test sets and then used in several genome-wide applications http://genomeucscedu hosts a web-based BLAT server for the human genome

...read more

7,686 citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202235
20215,598
20205,399
20194,653
20184,045
20173,750