scispace - formally typeset
Journal ArticleDOI

Fast Mass Transport Through Sub-2-Nanometer Carbon Nanotubes

Reads0
Chats0
TLDR
Gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration.
Abstract
We report gas and water flow measurements through microfabricated membranes in which aligned carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude. The measured water flow exceeds values calculated from continuum hydrodynamics models by more than three orders of magnitude and is comparable to flow rates extrapolated from molecular dynamics simulations. The gas and water permeabilities of these nanotube-based membranes are several orders of magnitude higher than those of commercial polycarbonate membranes, despite having pore sizes an order of magnitude smaller. These membranes enable fundamental studies of mass transport in confined environments, as well as more energy-efficient nanoscale filtration.

read more

Citations
More filters
Journal ArticleDOI

Science and technology for water purification in the coming decades

TL;DR: Some of the science and technology being developed to improve the disinfection and decontamination of water, as well as efforts to increase water supplies through the safe re-use of wastewater and efficient desalination of sea and brackish water are highlighted.
Journal ArticleDOI

The Future of Seawater Desalination: Energy, Technology, and the Environment

TL;DR: The possible reductions in energy demand by state-of-the-art seawater Desalination technologies, the potential role of advanced materials and innovative technologies in improving performance, and the sustainability of desalination as a technological solution to global water shortages are reviewed.
Journal ArticleDOI

Carbon Nanotubes: Present and Future Commercial Applications

TL;DR: Although not yet providing compelling mechanical strength or electrical or thermal conductivities for many applications, CNT yarns and sheets already have promising performance for applications including supercapacitors, actuators, and lightweight electromagnetic shields.
Journal ArticleDOI

Unimpeded permeation of water through helium-leak-tight graphene-based membranes.

TL;DR: Submicrometer-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors, and gases, including helium, but these membranes allow unimpeded permeation of water (H2O permeates through the membranes at least 1010 times faster than He).
Journal ArticleDOI

Precise and Ultrafast Molecular Sieving Through Graphene Oxide Membranes

TL;DR: This work investigates permeation through micrometer-thick laminates prepared by means of vacuum filtration of graphene oxide suspensions, which reveal that the GO membrane can attract a high concentration of small ions into the membrane, which may explain the fast ion transport.
References
More filters
Journal ArticleDOI

Water conduction through the hydrophobic channel of a carbon nanotube

TL;DR: Observations suggest that carbon nanotubes, with their rigid nonpolar structures, might be exploited as unique molecular channels for water and protons, with the channel occupancy and conductivity tunable by changes in the local channel polarity and solvent conditions.
Journal ArticleDOI

Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes

TL;DR: In this article, the authors demonstrate the efficient chemical vapor deposition synthesis of single-walled carbon nanotubes where the activity and lifetime of the catalysts are enhanced by water.
Journal Article

Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes-``Super-Growth''

TL;DR: Water-stimulated enhanced catalytic activity results in massive growth of superdense and vertically aligned nanotube forests with heights up to 2.5 millimeters that can be easily separated from the catalysts, providing nanotubes material with carbon purity above 99.98%.
Journal ArticleDOI

Enhanced flow in carbon nanotubes

TL;DR: It is shown that liquid flow through a membrane composed of an array of aligned carbon nanotubes is four to five orders of magnitude faster than would be predicted from conventional fluid-flow theory.
Journal ArticleDOI

Aligned multiwalled carbon nanotube membranes.

TL;DR: An array of aligned carbon nanotubes (CNTs) was incorporated across a polymer film to form a well-ordered nanoporous membrane structure, which was confirmed by electron microscopy, anisotropic electrical conductivity, gas flow, and ionic transport studies.
Related Papers (5)