scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins.

01 Jan 2012-Pest Management Science (Pest Manag Sci)-Vol. 68, Iss: 1, pp 16-30
TL;DR: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.
Abstract: BACKGROUND: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10000 Mg in 1992 to more than 80000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonicacid (AMPA) on a watershed scale is lacking. RESULTS: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff andflow route. CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. c � 2011 Society of Chemical Industry

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The field studies show that POEA, glyphosate, and AMPA persist on the soil from planting season to planting season but dissipate over time with little migration into deeper soil.

26 citations

Journal ArticleDOI
TL;DR: It is indicated that glyphosate-based herbicides may have adverse effects on aquatic organisms including macroinvertebrates, thus their use in (or nearby) surface waters should be subject to strict limitation.
Abstract: The non-selective, post-emergence herbicides based on glyphosate (N-(phosphonomethyl) glycine) are one of the most widely used pesticides in agriculture, urban areas and forestry. Although there has been documentation on the physical, chemical and toxicological properties of glyphosate, the aquatic toxicity of such formulations still requires assessment and evaluation. In the present study, we describe deliberate use of glyphosate-based herbicide in a bathing area of Lake Lednica (Wielkopolska, Poland) by unknown perpetrators in April, 2011. Glyphosate was detected using gas chromatography mass spectrometry (GC-MS) in the water samples collected from the bathing area at a mean concentration of 0.09 mg dm -3 . Aboveground parts of emerged macrophytes (Phragmites australis and Typha latifolia) covering the investigated area were completely withered. Studies of benthic macroinvertebrates revealed no significant differences in taxa number between event (13 taxa) and control (14 taxa) sites although differences in abundance of particular taxa were observed. Significantly lower numbers of Chironomidae (by 41%), Oligochaeta (by 43%), Vivipariae (by 75%), Hirudinae (by 75%), Asellus aquaticus (by 77%), Gammarus pulex (by 38%) and Dreissena polymorpha (by 42%) were found at the glyphosate-treated site. Furthermore, compared to the control, chironomids (Chironomidae) exposed to glyphosate were represented by specimens smaller in length while A. aquaticus only showed large adults. The ranges of glyphosate concentration in the tissues of sampled macroinvertebrates and Phragmites australis organs were 7.3-10.2 μg kg -1 and 16.2-24.7 μg kg -1 , respectively. Our study indicates that glyphosate-based herbicides may have adverse effects on aquatic organisms including macroinvertebrates, thus their use in (or nearby) surface waters should be subject to strict limitation.

26 citations


Cites background from "Fate and transport of glyphosate an..."

  • ...This metabolite is also frequently found in surface water with agricultural catchment areas (Coupe et al. 2012)....

    [...]

Journal ArticleDOI
TL;DR: The absence of negative effects on soil microbial communities in this study suggests that glyphosate use at recommended rates poses low risk to the microbiota.
Abstract: BACKGROUND A plot-scale experiment was conducted to assess the impact of field application rates of glyphosate on soil microbial communities by taking measurements of microbial activity (in terms of substrate-induced respiration and enzyme activity) in parallel with culture-independent approaches to assessing both bacterial abundance and diversity. Two rates of glyphosate, alone or in a mixture with 2,4-dichlorophenoxyacetic acid, were applied directly onto the soil surface, simulating normal use in chemical fallow in no-till systems. RESULTS No consistent rate-dependent responses were observed in the microbial activity parameters investigated in the field plots that were exposed to glyphosate. Denaturant gradient gel electrophoresis (DGGE) of the overall bacterial community (Eubacteria) and ammonia-oxidising bacteria (AOB) revealed no effects of the high rate of glyphosate on the structure of the communities in comparison with the control. No treatment effects were observed on the abundance of Eubacteria shortly after treatment in 2010, while a small but significant difference between the high rate and the control was detected in the first sampling in 2011. The abundance of AOB was relatively low during the study, and treatment effects were undetectable. CONCLUSIONS The absence of negative effects on soil microbial communities in this study suggests that glyphosate use at recommended rates poses low risk to the microbiota. © 2015 Society of Chemical Industry

26 citations

Journal ArticleDOI
TL;DR: The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA and can be used for contaminant source allocation and product authenticity as well.
Abstract: The interest in compound-specific isotope analysis for product authenticity control and source differentiation in environmental sciences has grown rapidly during the last decade. However, the isotopic analysis of very polar analytes is a challenging task due to the lack of suitable chromatographic separation techniques which can be used coupled to isotope ratio mass spectrometry. In this work, we present the first method to measure carbon isotope compositions of the widely applied herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) by liquid chromatography coupled to isotope ratio mass spectrometry. We demonstrate that this analysis can be carried out either in cation exchange or in reversed-phase separation modes. The reversed-phase separation yields a better performance in terms of resolution compared with the cation exchange method. The measurement of commercial glyphosate herbicide samples show its principal applicability and reveals a wide range of δ13C values between −24 and −34 ‰ for different manufacturers. The absolute minimum amounts required to perform a precise and accurate determination of carbon isotope compositions of glyphosate and AMPA were in the sub-microgram range. The method proposed is sensitive enough to further perform the experiments that are necessary to better understand the carbon isotope fractionation associated to the natural degradation of glyphosate into AMPA. Furthermore, it can be used for contaminant source allocation and product authenticity as well.

25 citations


Cites background from "Fate and transport of glyphosate an..."

  • ...1) facilitate sorption to soil [2], and some microorganisms are able to degrade glyphosate and use its phosphorous [3]....

    [...]

Journal ArticleDOI
TL;DR: The results indicate that fluridone and glyphosate disrupted the E2 concentration and decreased glutathione concentration in liver, whereas penoxsulam, imazamox, and fluridsone inhibited brain AChE activity.

25 citations

References
More filters
Book ChapterDOI
TL;DR: Glyphosate-based weed control products are among the most widely used broad-spectrum herbicides in the world and have been extensively investigated for their potential to produce adverse effects in nontarget organisms as discussed by the authors.
Abstract: Glyphosate-based weed control products are among the most widely used broad-spectrum herbicides in the world. The herbicidal properties of glyphosate were discovered in 1970, and commercial formulations for nonselective weed control were first introduced in 1974 (Franz et al. 1997). Formulations of glyphosate, including Roundup® Herbicide (RU)1 (Monsanto Company, St. Louis, MO), have been extensively investigated for their potential to produce adverse effects in nontarget organisms. Governmental regulatory agencies, international organizations, and others have reviewed and assessed the available scientific data for glyphosate formulations and independently judged their safety. Conclusions from three major organizations are publicly available and indicate RU can be used with minimal risk to the environment (Agriculture Canada 1991; USEPA 1993a; WHO 1994). Several review publications are available on the fate and effects of RU or glyphosate in the environment (Carlisle and Trevors 1988;Smith and Oehme 1992 ; Malik et al. 1989;Rueppel et al. 1977; Sullivan and Sullivan 1997;Forestry Canada, 1989). In addition, several books have been published about the environmental and human health considerations of glyphosate and its formulations (Grossbard and Atkinson 1985; Franz et al. 1997). In addition, RU and other glyphosate formulations have been selected for use in a number of weed control programs for state and local jurisdictions in the United States. Many of these uses require that ecological risk assessments be conducted in the form of Environmental Impact Statements or Environmental Assessments. These documents are comprehensive and specific to local use situations. Documents are available for risk assessments in Texas, Washington, Oregon, Pennsylvania, New York, Virginia, and other states (USDA 1989;USDA 1992;USDA 1996;USDA 1997;USDI 1989; Washington State DOT 1993).

883 citations

Journal ArticleDOI
TL;DR: The literature on pesticide losses in runoff waters from agricultural fields is reviewed in this paper, where the majority of commercial pesticides, total losses are 0.5%0 or less of the amounts applied, unless severe rainfall conditions occur within 1-2 weeks after application.
Abstract: The literature on pesticide losses in runoff waters from agricultural fields is reviewed. For the majority of commercial pesticides, total losses are 0.5%0 or less of the amounts applied, unless severe rainfall conditions occur within 1–2 weeks after application. Exceptions are the organochlorine insecticides, which may lose about 1% regardless of weather pattern because of their long persistence; and soil surface-applied, wettable-powder formulations of herbicides, which may lose up to 5%, depending on weather and slope, because of the ease of washoff of the powder.Pesticides with solubilities of 10 ppm or higher are lost mainly in the water phase of runoff, and erosion control practices will have little effect on such losses. Organochlorine pesticides, paraquat, and arsenical pesticides, however, are important cases of pesticides which are strongly adsorbed by sediments, and erosion control can be important in controlling losses of these compounds.The behavior and fate of pesticides in streams receiving runoff is generally not known. Information on such factors as time and distance of impact of a given runoff event, ability of local ecosystems to recover from transient pesticide concentrations, and dissipation or concentration processes in aquatic ecosystems will have to be obtained before “edge-of-field” pesticide losses can be related to water quality in receiving waters.

753 citations

Journal ArticleDOI
TL;DR: Glyphosate [N-(phosphonomethyl)glycine] was readily bound to kaolinite, illite, and bentonite clay and to charcoal and muck but not to ethyl cellulose as mentioned in this paper.
Abstract: Glyphosate [N-(phosphonomethyl)glycine] was readily bound to kaolinite, illite, and bentonite clay and to charcoal and muck but not to ethyl cellulose. Fe+++ and Al+++-saturated clays and organic matter adsorbed more glyphosate than Na+ or Ca+-saturated clays and organic matter. Glyphosate appears to be bound to the soil through the phosphonic acid moiety as phosphate in the soil competed with 14C-glyphosate for adsorption sites. Glyphosate mobility in the soil was very limited and was affected by pH, phosphate level, and soil type. The 14C-glyphosate was biodegraded in soil to 14CO2 possibly by co-metabolism. Potentiometric titrations of the compound gave pKa values of 2, 2.6, 5.6, and 10.6.

444 citations

Journal ArticleDOI
TL;DR: Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit and the development and use of failsafe introgression barriers in crops with such linked genes is needed.
Abstract: Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed.

387 citations

Journal ArticleDOI
TL;DR: In this paper, the Soil and Water Assessment Tool (SWAT) water quality model is designed to assess nonpoint and point source pollution and was recently modified for tile drainage.
Abstract: The presence of subsurface tile drainage systems can facilitate nutrient and pesticide transport, thereby contributing to environmental pollution. The Soil and Water Assessment Tool (SWAT) water quality model is designed to assess nonpoint and point source pollution and was recently modified for tile drainage. Over 25% of the nation's cropland required improved drainage. In this study, the model's ability to validate the tile drainage component is evaluated with nine years of hydrologic monitoring data collected from the South Fork watershed in Iowa, since about 80% of this watershed is tile drained. This watershed is a Conservation Effects Assessment Program benchmark watershed and typifies one of the more intensively managed agricultural areas in the Midwest. Comparison of measured and predicted values demonstrated that inclusion of the tile drainage system is imperative for obtaining a realistic watershed water balance. Two calibration/validation scenarios tested if the results differed in how the data set was divided. The optimum scenario results for the simulated monthly and daily flows had Nash-Sutcliffe efficiency (ENS) values during the calibration/validation (1995-1998/1999-2004) periods of 0.9/0.7 and 0.5/0.4, respectively. The second scenario results for the simulated monthly and daily flows had ENS values during the calibration/validation (1995-2000/2001-2004) periods of 0.8/0.5 and 0.7/0.2, respectively. The optimum scenario reflects the distribution of peak rainfall events represented in both the calibration and validation periods. The year 2000, being extremely dry, negatively impacted both the calibration and validation results. Each water budget component of the model gave reasonable output, which reveals that this model can be used for the assessment of tile drainage with its associated practices. Water yield results were significantly different for the simulations with and without the tile flow component (25.1% and 16.9%, expressed as a percent of precipitation). The results suggest that the SWAT2005 version modified for tile drainage is a promising tool to evaluate streamflow in tile-drained regions when the calibration period contains streamflows representing a wide range of rainfall events.

209 citations