scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins.

01 Jan 2012-Pest Management Science (Pest Manag Sci)-Vol. 68, Iss: 1, pp 16-30
TL;DR: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.
Abstract: BACKGROUND: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10000 Mg in 1992 to more than 80000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonicacid (AMPA) on a watershed scale is lacking. RESULTS: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff andflow route. CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. c � 2011 Society of Chemical Industry

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The results indicated that the parameters measured may be important indicators of herbicide contamination in G. pulex.
Abstract: This study had determined the effect of glyphosate-based herbicide (GBH) on acetylcholinesterase (AChE) enzyme activity, oxidative stress, and antioxidant status in Gammarus pulex. Firstly, the 96-h LC50 value of glyphosate on G. pulex was determined and calculated as 403 μg/L. Subsequently, the organisms were exposed to sub-lethal concentrations (10, 20, and 40 μg/L) of the determined GHB for 24 and 96 h. The samples were taken from control and GBH-treated groups at 24 and 96 h of study and analysed to determine the malondialdehyde (MDA) and reduced glutathione (GSH) levels, the AChE, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) enzyme activities. In the G. pulex exposed to GBH for 24 and 96 h, the MDA level increased significantly (p < 0.05). The GSH level, the AChE, the CAT, and the GPx activities decreased compared with the control group (p < 0.05). G. pulex exposure to GBH for 24 h showed a temporary reduction in the SOD. GBH exposure led to oxidative stress in the G. pulex as well as affected the cholinergic system of the organism. These results indicated that the parameters measured may be important indicators of herbicide contamination in G. pulex.

23 citations

Journal ArticleDOI
TL;DR: The exposure of glyphosate F induces an oxidative imbalance in C. elegans that leads to the DAF-16 activation and consequently to the expression of genes that boost the antioxidant defense system, and clt-1 gene and catalase activity proved to be excellent biomarkers to develop more sensitive protocols to assess the environmental risk of glyphosate use.
Abstract: Glyphosate-based formulation is used as non-selective and post-emergent herbicides in urban and rural activities. In view of its recurring applications in agricultural producing countries, the increase of glyphosate concentration in the environment stresses the need to test the adverse effects on non-target organisms and assess the risk of its use. This paper analyzes the toxicological and oxidative stress and modulatory effects of a glyphosate commercial formulation (glyphosate F) on the nematode Caenorhabditis elegans. We detected ROS production and enhancement of oxidative stress response in glyphosate F-treated nematodes. Particularly, we found an increased ctl-1 catalase gene expression of a catalase specific activity. In addition, we showed that glyphosate F treatment activated the FOXO transcription factor DAF-16, a critical target of the insulin/IGF-1 signaling pathway, which modulates the transcription of a broad range of genes involved in stress resistance, reproductive development, dauer formation, and longevity. In summary, the exposure of glyphosate F induces an oxidative imbalance in C. elegans that leads to the DAF-16 activation and consequently to the expression of genes that boost the antioxidant defense system. In this regard, clt-1 gene and catalase activity proved to be excellent biomarkers to develop more sensitive protocols to assess the environmental risk of glyphosate use.

22 citations

Journal ArticleDOI
TL;DR: Glyphosate and AMPA losses from urban areas that arise solely from amateur usage have been quantified and, in spite of overdosing occurring, glyphosate concentrations in drain flow were lower than concentrations reported elsewhere from professional use in urban areas.
Abstract: BACKGROUND It is necessary to understand the extent to which different sources of pesticides contribute to surface water contamination in order to focus preventive measures appropriately. The extent to which glyphosate use in the home and garden sector may contribute to surface water contamination has not previously been quantified. The aim of this study was to quantify the widely used herbicide glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in surface water drains (storm drains) that could be attributed to amateur, non-professional usage alone. RESULTS Maximum glyphosate and AMPA concentrations in surface water drains were 8.99 and 1.15 µg L−1 respectively after the first rain event following the main application period, but concentrations rapidly declined to <1.5 and <0.5 µg L−1. The AMPA:glyphosate ratio was typically 0.35. Less than 1% of the applied glyphosate was recovered in drain water. CONCLUSION Glyphosate and AMPA losses from urban areas that arise solely from amateur usage have been quantified. In spite of overdosing occurring, glyphosate concentrations in drain flow were lower than concentrations reported elsewhere from professional use in urban areas. © 2014 Society of Chemical Industry

22 citations

Journal ArticleDOI
TL;DR: Results showed that runoff, suspended sediment and associated glyphosate and AMPA off-site transport were significantly lower in T2 than in T1, and the pollution risk of terrestrial and aquatic environments through runoff and deposition can be considerable.

22 citations


Cites background from "Fate and transport of glyphosate an..."

  • ...…and AMPA adsorb strongly to soil particles, research on their transport by water erosion during rainfall events has focused mostly on their content in runoff water (Siimes et al., 2006; Warnemuende et al., 2007; Gregoire et al., 2010; Birch et al., 2011; Coupe et al., 2012; Daouk et al., 2013)....

    [...]

Journal ArticleDOI
TL;DR: A novel strain Stenotrophomonas acidaminiphila Y4B was isolated, which completely degraded glyphosate and its major metabolite aminomethylphosphonic acid (AMPA) and is an ideal degrader for the bioremediation of glyphosate-contaminated sites.
Abstract: The overuse of glyphosate has resulted in serious environmental contamination. Thus, effective techniques to remove glyphosate from the environment are required. Herein, we isolated a novel strain Stenotrophomonas acidaminiphila Y4B, which completely degraded glyphosate and its major metabolite aminomethylphosphonic acid (AMPA). Y4B degraded glyphosate over a broad concentration range (50-800 mg L-1), with a degradation efficiency of over 98% within 72 h (50 mg L-1). Y4B degraded glyphosate via the AMPA pathway by cleaving the C-N bond, followed by degradation of AMPA and subsequent metabolism. Y4B demonstrated strong competitiveness and substantially accelerated the degradation of glyphosate in different soils, degrading 71.93 and 89.81% of glyphosate (400 mg kg-1) within 5 days in sterile and nonsterile soils, respectively. The immobilized cells of Y4B were more efficient than their free cells and they displayed excellent biodegradation efficiency in a sediment-water system. Taken together, Y4B is an ideal degrader for the bioremediation of glyphosate-contaminated sites.

22 citations

References
More filters
Book ChapterDOI
TL;DR: Glyphosate-based weed control products are among the most widely used broad-spectrum herbicides in the world and have been extensively investigated for their potential to produce adverse effects in nontarget organisms as discussed by the authors.
Abstract: Glyphosate-based weed control products are among the most widely used broad-spectrum herbicides in the world. The herbicidal properties of glyphosate were discovered in 1970, and commercial formulations for nonselective weed control were first introduced in 1974 (Franz et al. 1997). Formulations of glyphosate, including Roundup® Herbicide (RU)1 (Monsanto Company, St. Louis, MO), have been extensively investigated for their potential to produce adverse effects in nontarget organisms. Governmental regulatory agencies, international organizations, and others have reviewed and assessed the available scientific data for glyphosate formulations and independently judged their safety. Conclusions from three major organizations are publicly available and indicate RU can be used with minimal risk to the environment (Agriculture Canada 1991; USEPA 1993a; WHO 1994). Several review publications are available on the fate and effects of RU or glyphosate in the environment (Carlisle and Trevors 1988;Smith and Oehme 1992 ; Malik et al. 1989;Rueppel et al. 1977; Sullivan and Sullivan 1997;Forestry Canada, 1989). In addition, several books have been published about the environmental and human health considerations of glyphosate and its formulations (Grossbard and Atkinson 1985; Franz et al. 1997). In addition, RU and other glyphosate formulations have been selected for use in a number of weed control programs for state and local jurisdictions in the United States. Many of these uses require that ecological risk assessments be conducted in the form of Environmental Impact Statements or Environmental Assessments. These documents are comprehensive and specific to local use situations. Documents are available for risk assessments in Texas, Washington, Oregon, Pennsylvania, New York, Virginia, and other states (USDA 1989;USDA 1992;USDA 1996;USDA 1997;USDI 1989; Washington State DOT 1993).

883 citations

Journal ArticleDOI
TL;DR: The literature on pesticide losses in runoff waters from agricultural fields is reviewed in this paper, where the majority of commercial pesticides, total losses are 0.5%0 or less of the amounts applied, unless severe rainfall conditions occur within 1-2 weeks after application.
Abstract: The literature on pesticide losses in runoff waters from agricultural fields is reviewed. For the majority of commercial pesticides, total losses are 0.5%0 or less of the amounts applied, unless severe rainfall conditions occur within 1–2 weeks after application. Exceptions are the organochlorine insecticides, which may lose about 1% regardless of weather pattern because of their long persistence; and soil surface-applied, wettable-powder formulations of herbicides, which may lose up to 5%, depending on weather and slope, because of the ease of washoff of the powder.Pesticides with solubilities of 10 ppm or higher are lost mainly in the water phase of runoff, and erosion control practices will have little effect on such losses. Organochlorine pesticides, paraquat, and arsenical pesticides, however, are important cases of pesticides which are strongly adsorbed by sediments, and erosion control can be important in controlling losses of these compounds.The behavior and fate of pesticides in streams receiving runoff is generally not known. Information on such factors as time and distance of impact of a given runoff event, ability of local ecosystems to recover from transient pesticide concentrations, and dissipation or concentration processes in aquatic ecosystems will have to be obtained before “edge-of-field” pesticide losses can be related to water quality in receiving waters.

753 citations

Journal ArticleDOI
TL;DR: Glyphosate [N-(phosphonomethyl)glycine] was readily bound to kaolinite, illite, and bentonite clay and to charcoal and muck but not to ethyl cellulose as mentioned in this paper.
Abstract: Glyphosate [N-(phosphonomethyl)glycine] was readily bound to kaolinite, illite, and bentonite clay and to charcoal and muck but not to ethyl cellulose. Fe+++ and Al+++-saturated clays and organic matter adsorbed more glyphosate than Na+ or Ca+-saturated clays and organic matter. Glyphosate appears to be bound to the soil through the phosphonic acid moiety as phosphate in the soil competed with 14C-glyphosate for adsorption sites. Glyphosate mobility in the soil was very limited and was affected by pH, phosphate level, and soil type. The 14C-glyphosate was biodegraded in soil to 14CO2 possibly by co-metabolism. Potentiometric titrations of the compound gave pKa values of 2, 2.6, 5.6, and 10.6.

444 citations

Journal ArticleDOI
TL;DR: Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit and the development and use of failsafe introgression barriers in crops with such linked genes is needed.
Abstract: Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed.

387 citations

Journal ArticleDOI
TL;DR: In this paper, the Soil and Water Assessment Tool (SWAT) water quality model is designed to assess nonpoint and point source pollution and was recently modified for tile drainage.
Abstract: The presence of subsurface tile drainage systems can facilitate nutrient and pesticide transport, thereby contributing to environmental pollution. The Soil and Water Assessment Tool (SWAT) water quality model is designed to assess nonpoint and point source pollution and was recently modified for tile drainage. Over 25% of the nation's cropland required improved drainage. In this study, the model's ability to validate the tile drainage component is evaluated with nine years of hydrologic monitoring data collected from the South Fork watershed in Iowa, since about 80% of this watershed is tile drained. This watershed is a Conservation Effects Assessment Program benchmark watershed and typifies one of the more intensively managed agricultural areas in the Midwest. Comparison of measured and predicted values demonstrated that inclusion of the tile drainage system is imperative for obtaining a realistic watershed water balance. Two calibration/validation scenarios tested if the results differed in how the data set was divided. The optimum scenario results for the simulated monthly and daily flows had Nash-Sutcliffe efficiency (ENS) values during the calibration/validation (1995-1998/1999-2004) periods of 0.9/0.7 and 0.5/0.4, respectively. The second scenario results for the simulated monthly and daily flows had ENS values during the calibration/validation (1995-2000/2001-2004) periods of 0.8/0.5 and 0.7/0.2, respectively. The optimum scenario reflects the distribution of peak rainfall events represented in both the calibration and validation periods. The year 2000, being extremely dry, negatively impacted both the calibration and validation results. Each water budget component of the model gave reasonable output, which reveals that this model can be used for the assessment of tile drainage with its associated practices. Water yield results were significantly different for the simulations with and without the tile flow component (25.1% and 16.9%, expressed as a percent of precipitation). The results suggest that the SWAT2005 version modified for tile drainage is a promising tool to evaluate streamflow in tile-drained regions when the calibration period contains streamflows representing a wide range of rainfall events.

209 citations