scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins.

01 Jan 2012-Pest Management Science (Pest Manag Sci)-Vol. 68, Iss: 1, pp 16-30
TL;DR: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil.
Abstract: BACKGROUND: Glyphosate [N-(phosphonomethyl)glycine] is a herbicide used widely throughout the world in the production of many crops and is heavily used on soybeans, corn and cotton. Glyphosate is used in almost all agricultural areas of the United States, and the agricultural use of glyphosate has increased from less than 10000 Mg in 1992 to more than 80000 Mg in 2007. The greatest intensity of glyphosate use is in the midwestern United States, where applications are predominantly to genetically modified corn and soybeans. In spite of the increase in usage across the United States, the characterization of the transport of glyphosate and its degradate aminomethylphosphonicacid (AMPA) on a watershed scale is lacking. RESULTS: Glyphosate and AMPA were frequently detected in the surface waters of four agricultural basins. The frequency and magnitude of detections varied across basins, and the load, as a percentage of use, ranged from 0.009 to 0.86% and could be related to three general characteristics: source strength, rainfall runoff andflow route. CONCLUSIONS: Glyphosate use in a watershed results in some occurrence in surface water; however, the watersheds most at risk for the offsite transport of glyphosate are those with high application rates, rainfall that results in overland runoff and a flow route that does not include transport through the soil. c � 2011 Society of Chemical Industry

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A coherent body of evidence is revealed indicating that GlyBH could be toxic below the regulatory lowest observed adverse effect level for chronic toxic effects, which includes teratogenic, tumorigenic and hepatorenal effects.

371 citations


Cites background from "Fate and transport of glyphosate an..."

  • ...Residues of glyphosate and AMPA have also been found to contaminate surface waters, even in areas without GMO crops (Coupe et al., 2012; IFEN, 2006)....

    [...]

Journal ArticleDOI
TL;DR: This review is designed to update previous reviews of glyphosate‐based herbicide toxicity, with a focus on recent studies of the aquatic toxicity of this class of chemicals.
Abstract: Glyphosate [N-(phosphonomethyl) glycine] is a broad spectrum, post emergent herbicide and is among the most widely used agricultural chemicals globally. Initially developed to control the growth of weed species in agriculture, this herbicide also plays an important role in both modern silviculture and domestic weed control. The creation of glyphosate tolerant crop species has significantly increased the demand and use of this herbicide and has also increased the risk of exposure to non-target species. Commercially available glyphosate-based herbicides are comprised of multiple, often proprietary, constituents, each with a unique level of toxicity. Surfactants used to increase herbicide efficacy have been identified in some studies as the chemicals responsible for toxicity of glyphosate-based herbicides to non-target species, yet they are often difficult to chemically identify. Most glyphosate-based herbicides are not approved for use in the aquatic environment; however, measurable quantities of the active ingredient and surfactants are detected in surface waters, giving them the potential to alter the physiology of aquatic organisms. Acute toxicity is highly species dependant across all taxa, with toxicity depending on the timing, magnitude, and route of exposure. The toxicity of glyphosate to amphibians has been a major focus of recent research, which has suggested increased sensitivity compared with other vertebrates due to their life history traits and reliance on both the aquatic and terrestrial environments. This review is designed to update previous reviews of glyphosate-based herbicide toxicity, with a focus on recent studies of the aquatic toxicity of this class of chemicals.

359 citations


Cites background from "Fate and transport of glyphosate an..."

  • ...For example, soil phosphate concentrations can greatly affect glyphosate’s ability to adsorb, as both compete to bind the same surface sites on individual soil particles (Coupe et al., 2012)....

    [...]

  • ...2014; 34: 458–479Copyright © 2014 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/jat 462 approximately 10,000Mg in 1992 (Coupe et al., 2012)....

    [...]

Journal ArticleDOI
TL;DR: A new theoretical basis for the combined effects of NPs and pesticide pollution is provided and the presence of glyphosate enhanced the stability of the dispersion system, which allowed more nPS-NH2 to adsorb on the surface of M.aeruginosa.

181 citations

Journal ArticleDOI
TL;DR: There is a critical lack of epidemiological data - especially on water exposure - to understand the toxicological effects, if any, of AMPA on humans, even though there are not sufficient regulatory limits for metabolites.

152 citations


Cites background from "Fate and transport of glyphosate an..."

  • ...40 AMPA has been reported to occur widely in the air of agricultural areas (Chang et al., 2011; 41 Battaglin et al., 2014), surface waters (Coupe et al., 2012; Scribner et al., 2007), sediments 42 (Ronco et al., 2016) and shallow groundwater at depths within 2 m of the edge of the 43 streams (Van…...

    [...]

  • ...Coupe et al. (2012) observed high levels of glyphosate and 316 AMPA in surface water correlated with fresh application of herbicide....

    [...]

Journal ArticleDOI
TL;DR: The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration.
Abstract: Use of glyphosate-based herbicides is increasing worldwide. The authors review the available data related to potential impacts of these herbicides on amphibians and conduct a qualitative meta-analysis. Because little is known about environmental concentrations of glyphosate in amphibian habitats and virtually nothing is known about environmental concentrations of the substances added to the herbicide formulations that mainly contribute to adverse effects, glyphosate levels can only be seen as approximations for contamination with glyphosate-based herbicides. The impact on amphibians depends on the herbicide formulation, with different sensitivity of taxa and life stages. Effects on development of larvae apparently are the most sensitive endpoints to study. As with other contaminants, costressors mainly increase adverse effects. If and how glyphosate-based herbicides and other pesticides contribute to amphibian decline is not answerable yet due to missing data on how natural populations are affected. Amphibian risk assessment can only be conducted case-specifically, with consideration of the particular herbicide formulation. The authors recommend better monitoring of both amphibian populations and contamination of habitats with glyphosate-based herbicides, not just glyphosate, and suggest including amphibians in standardized test batteries to study at least dermal administration. Environ Toxicol Chem 2013;32:1688–1700. © 2013 SETAC

127 citations


Cites background from "Fate and transport of glyphosate an..."

  • ...4 mg/L [51]) in a subsurface drain, which is not an amphibian habitat....

    [...]

References
More filters
Book ChapterDOI
TL;DR: Glyphosate-based weed control products are among the most widely used broad-spectrum herbicides in the world and have been extensively investigated for their potential to produce adverse effects in nontarget organisms as discussed by the authors.
Abstract: Glyphosate-based weed control products are among the most widely used broad-spectrum herbicides in the world. The herbicidal properties of glyphosate were discovered in 1970, and commercial formulations for nonselective weed control were first introduced in 1974 (Franz et al. 1997). Formulations of glyphosate, including Roundup® Herbicide (RU)1 (Monsanto Company, St. Louis, MO), have been extensively investigated for their potential to produce adverse effects in nontarget organisms. Governmental regulatory agencies, international organizations, and others have reviewed and assessed the available scientific data for glyphosate formulations and independently judged their safety. Conclusions from three major organizations are publicly available and indicate RU can be used with minimal risk to the environment (Agriculture Canada 1991; USEPA 1993a; WHO 1994). Several review publications are available on the fate and effects of RU or glyphosate in the environment (Carlisle and Trevors 1988;Smith and Oehme 1992 ; Malik et al. 1989;Rueppel et al. 1977; Sullivan and Sullivan 1997;Forestry Canada, 1989). In addition, several books have been published about the environmental and human health considerations of glyphosate and its formulations (Grossbard and Atkinson 1985; Franz et al. 1997). In addition, RU and other glyphosate formulations have been selected for use in a number of weed control programs for state and local jurisdictions in the United States. Many of these uses require that ecological risk assessments be conducted in the form of Environmental Impact Statements or Environmental Assessments. These documents are comprehensive and specific to local use situations. Documents are available for risk assessments in Texas, Washington, Oregon, Pennsylvania, New York, Virginia, and other states (USDA 1989;USDA 1992;USDA 1996;USDA 1997;USDI 1989; Washington State DOT 1993).

883 citations

Journal ArticleDOI
TL;DR: The literature on pesticide losses in runoff waters from agricultural fields is reviewed in this paper, where the majority of commercial pesticides, total losses are 0.5%0 or less of the amounts applied, unless severe rainfall conditions occur within 1-2 weeks after application.
Abstract: The literature on pesticide losses in runoff waters from agricultural fields is reviewed. For the majority of commercial pesticides, total losses are 0.5%0 or less of the amounts applied, unless severe rainfall conditions occur within 1–2 weeks after application. Exceptions are the organochlorine insecticides, which may lose about 1% regardless of weather pattern because of their long persistence; and soil surface-applied, wettable-powder formulations of herbicides, which may lose up to 5%, depending on weather and slope, because of the ease of washoff of the powder.Pesticides with solubilities of 10 ppm or higher are lost mainly in the water phase of runoff, and erosion control practices will have little effect on such losses. Organochlorine pesticides, paraquat, and arsenical pesticides, however, are important cases of pesticides which are strongly adsorbed by sediments, and erosion control can be important in controlling losses of these compounds.The behavior and fate of pesticides in streams receiving runoff is generally not known. Information on such factors as time and distance of impact of a given runoff event, ability of local ecosystems to recover from transient pesticide concentrations, and dissipation or concentration processes in aquatic ecosystems will have to be obtained before “edge-of-field” pesticide losses can be related to water quality in receiving waters.

753 citations

Journal ArticleDOI
TL;DR: Glyphosate [N-(phosphonomethyl)glycine] was readily bound to kaolinite, illite, and bentonite clay and to charcoal and muck but not to ethyl cellulose as mentioned in this paper.
Abstract: Glyphosate [N-(phosphonomethyl)glycine] was readily bound to kaolinite, illite, and bentonite clay and to charcoal and muck but not to ethyl cellulose. Fe+++ and Al+++-saturated clays and organic matter adsorbed more glyphosate than Na+ or Ca+-saturated clays and organic matter. Glyphosate appears to be bound to the soil through the phosphonic acid moiety as phosphate in the soil competed with 14C-glyphosate for adsorption sites. Glyphosate mobility in the soil was very limited and was affected by pH, phosphate level, and soil type. The 14C-glyphosate was biodegraded in soil to 14CO2 possibly by co-metabolism. Potentiometric titrations of the compound gave pKa values of 2, 2.6, 5.6, and 10.6.

444 citations

Journal ArticleDOI
TL;DR: Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit and the development and use of failsafe introgression barriers in crops with such linked genes is needed.
Abstract: Glyphosate [N-(phosphonomethyl) glycine]-resistant crops (GRCs), canola (Brassica napus L.), cotton (Gossypium hirsutum L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.] have been commercialized and grown extensively in the Western Hemisphere and, to a lesser extent, elsewhere. Glyphosate-resistant cotton and soybean have become dominant in those countries where their planting is permitted. Effects of glyphosate on contamination of soil, water, and air are minimal, compared to some of the herbicides that they replace. No risks have been found with food or feed safety or nutritional value in products from currently available GRCs. Glyphosate-resistant crops have promoted the adoption of reduced- or no-tillage agriculture in the USA and Argentina, providing a substantial environmental benefit. Weed species in GRC fields have shifted to those that can more successfully withstand glyphosate and to those that avoid the time of its application. Three weed species have evolved resistance to glyphosate in GRCs. Glyphosate-resistant crops have greater potential to become problems as volunteer crops than do conventional crops. Glyphosate resistance transgenes have been found in fields of canola that are supposed to be non-transgenic. Under some circumstances, the largest risk of GRCs may be transgene flow (introgression) from GRCs to related species that might become problems in natural ecosystems. Glyphosate resistance transgenes themselves are highly unlikely to be a risk in wild plant populations, but when linked to transgenes that may impart fitness benefits outside of agriculture (e.g., insect resistance), natural ecosystems could be affected. The development and use of failsafe introgression barriers in crops with such linked genes is needed.

387 citations

Journal ArticleDOI
TL;DR: In this paper, the Soil and Water Assessment Tool (SWAT) water quality model is designed to assess nonpoint and point source pollution and was recently modified for tile drainage.
Abstract: The presence of subsurface tile drainage systems can facilitate nutrient and pesticide transport, thereby contributing to environmental pollution. The Soil and Water Assessment Tool (SWAT) water quality model is designed to assess nonpoint and point source pollution and was recently modified for tile drainage. Over 25% of the nation's cropland required improved drainage. In this study, the model's ability to validate the tile drainage component is evaluated with nine years of hydrologic monitoring data collected from the South Fork watershed in Iowa, since about 80% of this watershed is tile drained. This watershed is a Conservation Effects Assessment Program benchmark watershed and typifies one of the more intensively managed agricultural areas in the Midwest. Comparison of measured and predicted values demonstrated that inclusion of the tile drainage system is imperative for obtaining a realistic watershed water balance. Two calibration/validation scenarios tested if the results differed in how the data set was divided. The optimum scenario results for the simulated monthly and daily flows had Nash-Sutcliffe efficiency (ENS) values during the calibration/validation (1995-1998/1999-2004) periods of 0.9/0.7 and 0.5/0.4, respectively. The second scenario results for the simulated monthly and daily flows had ENS values during the calibration/validation (1995-2000/2001-2004) periods of 0.8/0.5 and 0.7/0.2, respectively. The optimum scenario reflects the distribution of peak rainfall events represented in both the calibration and validation periods. The year 2000, being extremely dry, negatively impacted both the calibration and validation results. Each water budget component of the model gave reasonable output, which reveals that this model can be used for the assessment of tile drainage with its associated practices. Water yield results were significantly different for the simulations with and without the tile flow component (25.1% and 16.9%, expressed as a percent of precipitation). The results suggest that the SWAT2005 version modified for tile drainage is a promising tool to evaluate streamflow in tile-drained regions when the calibration period contains streamflows representing a wide range of rainfall events.

209 citations