scispace - formally typeset
Search or ask a question
Book ChapterDOI

Fatigue Monitoring of a Dented Pipeline Specimen Using Infrared Thermography, DIC and Fiber Optic Strain Gages

TL;DR: In this article, an investigation program has been launched with the objective of presenting combinations of analytical, experimental and numerical methods to predict and monitor fatigue initiation and fatigue damage progression in equipment such as pressure vessels, tanks, piping and pipelines with dents or shape anomalies.
Abstract: An investigation program has been launched with the objective of presenting combinations of analytical, experimental and numerical methods to predict and monitor fatigue initiation and fatigue damage progression in equipment such as pressure vessels, tanks, piping and pipelines with dents or shape anomalies. The present paper reports initial results from tests where these techniques were applied to a pipeline specimen containing a plain longitudinal dented subjected to hydrostatic cyclic loading. Some of the material’s fatigue properties assessment used validated rapid approaches based on infrared thermography. The monitoring of fatigue initiation and propagation in the actual specimen used nondestructive infrared inspection techniques. Thermoelasticity stress analysis (TSA) and three-dimensional digital image correlation (3D-DIC) were used to determine fatigue hot spots locations as well as strain concentrations. Full field TSA and fiber optic Bragg strain gages (FBSG) were used to determine the overall stress field (TSA) as well hot spot strain evolution (FBSG) along the loading cycles. Strain fields determined from the experimental measurements and from finite element analysis (FEA) were combined with the fatigue Coffin-Manson model to predict fatigue life (Nc). The tested 3 m long tubular specimen was fabricated with API 5L Gr. B 12.75″ OD with ¼″ thickness pipes. The excellent agreement among test and predicted results achieved up to now are commented in the paper.
Citations
More filters
References
More filters
Book
26 Mar 2009
TL;DR: In this paper, a comprehensive overview of image correlation for shape, motion and deformation measurements is provided. But, the authors do not discuss the effect of out-of-plane motion on 2D measurements.
Abstract: Image Correlation for Shape, Motion and Deformation Measurements provides a comprehensive overview of data extraction through image analysis. Readers will find and in-depth look into various single- and multi-camera models (2D-DIC and 3D-DIC), two- and three-dimensional computer vision, and volumetric digital image correlation (VDIC). Fundamentals of accurate image matching are described, along with presentations of both new methods for quantitative error estimates in correlation-based motion measurements, and the effect of out-of-plane motion on 2D measurements. Thorough appendices offer descriptions of continuum mechanics formulations, methods for local surface strain estimation and non-linear optimization, as well as terminology in statistics and probability. With equal treatment of computer vision fundamentals and techniques for practical applications, this volume is both a reference for academic and industry-based researchers and engineers, as well as a valuable companion text for appropriate vision-based educational offerings.

2,454 citations

Journal ArticleDOI
TL;DR: In this article, the Risitano method is used to determine the fatigue limit of an element by analyzing the temperature of the external surface during the application of cyclic loading.

571 citations

Journal ArticleDOI
TL;DR: In this paper, the Risitano method is used to determine the fatigue limit of a material and its components, and a procedure for the definition of the whole fatigue curve is presented.

300 citations

Journal ArticleDOI
TL;DR: The theory of thermoelastic stress analysis is reviewed and the implications of some theoretical developments are assessed in this article, where available instrumentation is described and techniques available for separation of individual stress values are summarized.
Abstract: The theory of thermoelastic stress analysis is reviewed and the implications of some theoretical developments are assessed. Available instrumentation is described and techniques available for separation of individual stress values are summarized. The scope of the technique is illustrated with reference to a number of applications covering crack-tip stress studies, stress analysis and damage assessment in composite materials, and ‘field’ work on a traffic-loaded road bridge.

217 citations

Journal ArticleDOI
TL;DR: In this paper, a complete and detailed insight into the origins of the various forms of the equations describing the thermoelastic effect is given with reference to the concepts of the thermodynamic theory of a continuum.
Abstract: Thermoelastic stress analysis (TSA) is now a well-known experimental technique providing information on the surface stress field in structures. Many studies have assessed the potential of the technique for a number of applications and some useful and detailed reviews of these investigations are available, focusing mainly on the experimental aspects related to the measurement of the thermoelastic signal. In this work, instead, a complete and detailed insight into the origins of the various forms of the equations describing the thermoelastic effect is given with reference to the concepts of the thermodynamic theory of a continuum. A discussion on the theory leading to the thermoelastic effect law is intended to give a useful overview of the applications and real limitations of TSA.

192 citations