scispace - formally typeset
Search or ask a question

FDDB: A benchmark for face detection in unconstrained settings

TL;DR: A new data set of face images with more faces and more accurate annotations for face regions than in previous data sets is presented and two rigorous and precise methods for evaluating the performance of face detection algorithms are proposed.
Abstract: Despite the maturity of face detection research, it remains difficult to compare different algorithms for face detection. This is partly due to the lack of common evaluation schemes. Also, existing data sets for evaluating face detection algorithms do not capture some aspects of face appearances that are manifested in real-world scenarios. In this work, we address both of these issues. We present a new data set of face images with more faces and more accurate annotations for face regions than in previous data sets. We also propose two rigorous and precise methods for evaluating the performance of face detection algorithms. We report results of several standard algorithms on the new benchmark.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper proposed a deep cascaded multitask framework that exploits the inherent correlation between detection and alignment to boost up their performance, which leverages a cascaded architecture with three stages of carefully designed deep convolutional networks to predict face and landmark location in a coarse-to-fine manner.
Abstract: Face detection and alignment in unconstrained environment are challenging due to various poses, illuminations, and occlusions. Recent studies show that deep learning approaches can achieve impressive performance on these two tasks. In this letter, we propose a deep cascaded multitask framework that exploits the inherent correlation between detection and alignment to boost up their performance. In particular, our framework leverages a cascaded architecture with three stages of carefully designed deep convolutional networks to predict face and landmark location in a coarse-to-fine manner. In addition, we propose a new online hard sample mining strategy that further improves the performance in practice. Our method achieves superior accuracy over the state-of-the-art techniques on the challenging face detection dataset and benchmark and WIDER FACE benchmarks for face detection, and annotated facial landmarks in the wild benchmark for face alignment, while keeps real-time performance.

3,980 citations

Journal ArticleDOI
TL;DR: In this article, a review of deep learning-based object detection frameworks is provided, focusing on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further.
Abstract: Due to object detection’s close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles that combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy, and optimization function. In this paper, we provide a review of deep learning-based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely, the convolutional neural network. Then, we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection, and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network-based learning systems.

3,097 citations

Proceedings ArticleDOI
16 Jun 2012
TL;DR: It is shown that tree-structured models are surprisingly effective at capturing global elastic deformation, while being easy to optimize unlike dense graph structures, in real-world, cluttered images.
Abstract: We present a unified model for face detection, pose estimation, and landmark estimation in real-world, cluttered images. Our model is based on a mixtures of trees with a shared pool of parts; we model every facial landmark as a part and use global mixtures to capture topological changes due to viewpoint. We show that tree-structured models are surprisingly effective at capturing global elastic deformation, while being easy to optimize unlike dense graph structures. We present extensive results on standard face benchmarks, as well as a new “in the wild” annotated dataset, that suggests our system advances the state-of-the-art, sometimes considerably, for all three tasks. Though our model is modestly trained with hundreds of faces, it compares favorably to commercial systems trained with billions of examples (such as Google Picasa and face.com).

2,340 citations


Cites background from "FDDB: A benchmark for face detectio..."

  • ...Our dataset differs from similar “in-the-wild” collections [20, 3, 23, 5] in its annotation of multiple, non-frontal faces in a single image....

    [...]

Proceedings ArticleDOI
27 Jun 2016
TL;DR: There is a gap between current face detection performance and the real world requirements, and the WIDER FACE dataset, which is 10 times larger than existing datasets is introduced, which contains rich annotations, including occlusions, poses, event categories, and face bounding boxes.
Abstract: Face detection is one of the most studied topics in the computer vision community. Much of the progresses have been made by the availability of face detection benchmark datasets. We show that there is a gap between current face detection performance and the real world requirements. To facilitate future face detection research, we introduce the WIDER FACE dataset1, which is 10 times larger than existing datasets. The dataset contains rich annotations, including occlusions, poses, event categories, and face bounding boxes. Faces in the proposed dataset are extremely challenging due to large variations in scale, pose and occlusion, as shown in Fig. 1. Furthermore, we show that WIDER FACE dataset is an effective training source for face detection. We benchmark several representative detection systems, providing an overview of state-of-the-art performance and propose a solution to deal with large scale variation. Finally, we discuss common failure cases that worth to be further investigated.

1,458 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: This work proposes a cascade architecture built on convolutional neural networks (CNNs) with very powerful discriminative capability, while maintaining high performance, and introduces a CNN-based calibration stage after each of the detection stages in the cascade.
Abstract: In real-world face detection, large visual variations, such as those due to pose, expression, and lighting, demand an advanced discriminative model to accurately differentiate faces from the backgrounds. Consequently, effective models for the problem tend to be computationally prohibitive. To address these two conflicting challenges, we propose a cascade architecture built on convolutional neural networks (CNNs) with very powerful discriminative capability, while maintaining high performance. The proposed CNN cascade operates at multiple resolutions, quickly rejects the background regions in the fast low resolution stages, and carefully evaluates a small number of challenging candidates in the last high resolution stage. To improve localization effectiveness, and reduce the number of candidates at later stages, we introduce a CNN-based calibration stage after each of the detection stages in the cascade. The output of each calibration stage is used to adjust the detection window position for input to the subsequent stage. The proposed method runs at 14 FPS on a single CPU core for VGA-resolution images and 100 FPS using a GPU, and achieves state-of-the-art detection performance on two public face detection benchmarks.

1,325 citations


Cites background from "FDDB: A benchmark for face detectio..."

  • ...…and obtain high quality localization; • we present a multi-resolution CNN architecture that can be more discriminative than the single resolution CNN with only a fractional overhead; • we further improve the state-of-the-art performance on the Face Detection Data Set and Benchmark (FDDB) [7]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates is described. But the detection performance is limited to 15 frames per second.
Abstract: This paper describes a face detection framework that is capable of processing images extremely rapidly while achieving high detection rates. There are three key contributions. The first is the introduction of a new image representation called the “Integral Image” which allows the features used by our detector to be computed very quickly. The second is a simple and efficient classifier which is built using the AdaBoost learning algorithm (Freund and Schapire, 1995) to select a small number of critical visual features from a very large set of potential features. The third contribution is a method for combining classifiers in a “cascade” which allows background regions of the image to be quickly discarded while spending more computation on promising face-like regions. A set of experiments in the domain of face detection is presented. The system yields face detection performance comparable to the best previous systems (Sung and Poggio, 1998; Rowley et al., 1998; Schneiderman and Kanade, 2000; Roth et al., 2000). Implemented on a conventional desktop, face detection proceeds at 15 frames per second.

13,037 citations

Journal ArticleDOI
TL;DR: This paper has always been one of my favorite children, combining as it does elements of the duality of linear programming and combinatorial tools from graph theory, and it may be of some interest to tell the story of its origin this article.
Abstract: This paper has always been one of my favorite “children,” combining as it does elements of the duality of linear programming and combinatorial tools from graph theory. It may be of some interest to tell the story of its origin.

11,096 citations


"FDDB: A benchmark for face detectio..." refers methods in this paper

  • ...This dual formulation is exploited by the Hungarian algorithm [11] to obtain the solution for the former problem....

    [...]

Proceedings Article
03 Jan 2001
TL;DR: A simple spectral clustering algorithm that can be implemented using a few lines of Matlab is presented, and tools from matrix perturbation theory are used to analyze the algorithm, and give conditions under which it can be expected to do well.
Abstract: Despite many empirical successes of spectral clustering methods— algorithms that cluster points using eigenvectors of matrices derived from the data—there are several unresolved issues. First. there are a wide variety of algorithms that use the eigenvectors in slightly different ways. Second, many of these algorithms have no proof that they will actually compute a reasonable clustering. In this paper, we present a simple spectral clustering algorithm that can be implemented using a few lines of Matlab. Using tools from matrix perturbation theory, we analyze the algorithm, and give conditions under which it can be expected to do well. We also show surprisingly good experimental results on a number of challenging clustering problems.

9,043 citations


"FDDB: A benchmark for face detectio..." refers methods in this paper

  • ...Following the spectral graph-clustering approach [15], we compute the (unnormalized) Laplacian LG of graph G as...

    [...]

  • ...We cluster (steps 3-5 of Algorithm 1) using a spectral graph-clustering approach [15]....

    [...]

Journal ArticleDOI
TL;DR: A neural network-based upright frontal face detection system that arbitrates between multiple networks to improve performance over a single network, and a straightforward procedure for aligning positive face examples for training.
Abstract: We present a neural network-based upright frontal face detection system. A retinally connected neural network examines small windows of an image and decides whether each window contains a face. The system arbitrates between multiple networks to improve performance over a single network. We present a straightforward procedure for aligning positive face examples for training. To collect negative examples, we use a bootstrap algorithm, which adds false detections into the training set as training progresses. This eliminates the difficult task of manually selecting nonface training examples, which must be chosen to span the entire space of nonface images. Simple heuristics, such as using the fact that faces rarely overlap in images, can further improve the accuracy. Comparisons with several other state-of-the-art face detection systems are presented, showing that our system has comparable performance in terms of detection and false-positive rates.

4,105 citations

Journal ArticleDOI
TL;DR: In this article, the authors categorize and evaluate face detection algorithms and discuss relevant issues such as data collection, evaluation metrics and benchmarking, and conclude with several promising directions for future research.
Abstract: Images containing faces are essential to intelligent vision-based human-computer interaction, and research efforts in face processing include face recognition, face tracking, pose estimation and expression recognition. However, many reported methods assume that the faces in an image or an image sequence have been identified and localized. To build fully automated systems that analyze the information contained in face images, robust and efficient face detection algorithms are required. Given a single image, the goal of face detection is to identify all image regions which contain a face, regardless of its 3D position, orientation and lighting conditions. Such a problem is challenging because faces are non-rigid and have a high degree of variability in size, shape, color and texture. Numerous techniques have been developed to detect faces in a single image, and the purpose of this paper is to categorize and evaluate these algorithms. We also discuss relevant issues such as data collection, evaluation metrics and benchmarking. After analyzing these algorithms and identifying their limitations, we conclude with several promising directions for future research.

3,894 citations


"FDDB: A benchmark for face detectio..." refers background in this paper

  • ...[28], the reported performance measures depend on the definition of a “correct” detection result....

    [...]

  • ...Moving forward from previous comparisons [28] of approaches that focus on limited head orientations, we intend to evaluate different approaches for the most general, i....

    [...]