Feature-guided wave-based health monitoring of bent plates using fiber Bragg gratings:
01 May 2017-Journal of Intelligent Material Systems and Structures (SAGE Publications)-Vol. 28, Iss: 9, pp 1211-1220
TL;DR: In this article, a fiber Bragg grating based technique was proposed to detect anomalies or defects in plate structures with transverse bends, both in the case of defect-free and transverse defects.
Abstract: Harnessing of ultrasonic guided waves confined in local features such as bends and welds, known as feature-guided waves, has emerged as a promising technique for non-destructive testing and structural health monitoring of industrial and aerospace structures. This article introduces a fiber Bragg grating based technique which uses feature-guided waves to detect anomalies or defects in plate structures with transverse bends. We are able to obtain good consistency between simulation and experimental results, both in the case of defect-free bent plates and those with transverse defects. Such results establish fiber Bragg gratings as a viable alternative to conventional techniques for structural health monitoring of bent plates.
Citations
More filters
[...]
TL;DR: In this article , a baseline-free statistical approach for the identification and localization of delamination using sparse sampling and density-based spatial clustering of applications with noise (DBSCAN) technique is proposed.
Abstract: Delamination in composite structures is characterized by a resonant cavity wherein a fraction of an ultrasonic guided wave may be trapped. Based on this wave trapping phenomenon, we propose a baseline-free statistical approach for the identification and localization of delamination using sparse sampling and density-based spatial clustering of applications with noise (DBSCAN) technique. The proposed technique can be deployed for rapid inspection with minimal human intervention. The Performance of the proposed technique in terms of its ability to determine the precise location of such defects is quantified through the probability of detection measurements. The robustness of the proposed technique is tested through extensive simulations consisting of different random locations of defects on flat plate structures with different sizes and orientation as well as different values of signal to noise ratio of the simulated data. The simulation results are also validated using experimental data and the results are found to be in good agreement.
67 citations
[...]
TL;DR: In this article, the feasibility of using ultrasonic feature guided waves (FGW) for rapid screening of typical 90° bends made of quasi-isotropic composite laminates is explored.
Abstract: Complex-shaped composite components have been extensively incorporated as reinforcing structures in the aerospace industry. Various types of damages can be initiated in these structures due to the stress concentration and out-of-plane impacts during the in-service use, which have to be detected timely in case they propagate at subsurface laminae and ultimately lead to catastrophic failure. This paper explores the feasibility of using ultrasonic feature guided waves (FGW) for rapid screening of typical 90° bends made of quasi-isotropic composite laminates. Such FGWs are capable of focusing the propagation energy along the feature, with limited leakage to the adjacent plate. Modal studies of the composite bent plate are carried out by applying the Semi-Analytical Finite Element (SAFE) method, revealing properties of the FGWs that exist in the structure. A shear horizontal type bend-guided mode has been identified as a promising candidate. The mode is almost non-dispersive and non-leaky with strong energy confinement in the bend region, which is attractive to be applied as a screening tool for composite bends. Both 3D Finite Element (FE) simulations and experiments are performed to study the interaction of the identified FGW mode with different defects occurred in the bend region such as the interlaminar delamination and the transverse crack, showing good agreement. The wave-defect resonance phenomenon and the reflection behavior are investigated for localizing these two types of defects, and the potential of the FGW for efficient damage detection in composite bends is well demonstrated.
40 citations
Cites background from "Feature-guided wave-based health mo..."
[...]
[...]
TL;DR: In this review, the mature techniques of FBG-based ultrasonic sensors and their practical applications in ultrasonic structural health monitoring are discussed and state-of-the-art techniques are introduced to fully present the current developments.
Abstract: The fiber Bragg grating (FBG) sensor, which was developed over recent decades, has been widely used to measure manifold static measurands in a variety of industrial sectors. Multiple experiments have demonstrated its ability in ultrasonic detection and its potential in ultrasonic structural health monitoring. Unlike static measurements, ultrasonic detection requires a higher sensitivity and broader bandwidth to ensure the fidelity of the ultrasonic Lamb wave that propagates in a plate-like structure for the subsequent waveform analysis. Thus, the FBG sensor head and its corresponding demodulation system need to be carefully designed, and other practical issues, such as the installation methods and data process methods, should also be properly addressed. In this review, the mature techniques of FBG-based ultrasonic sensors and their practical applications in ultrasonic structural health monitoring are discussed. In addition, state-of-the-art techniques are introduced to fully present the current developments.
38 citations
Cites methods from "Feature-guided wave-based health mo..."
[...]
[...]
[...]
TL;DR: In this paper, a feature guided wave (FGW) was used for rapid screening of the bond line between a stiffener and a carbon fiber reinforced polymer (CFRP) composite panel.
Abstract: Adhesive bonding is widely used in aerospace composite structures. A continuous well-cured bond can offer good joint strength and improved fatigue and impact resistance, and is therefore crucial to the performance of the entire structure. This paper explores the feasibility of using feature guided waves (FGW) for rapid screening of the bond line between a stiffener and a carbon fiber reinforced polymer (CFRP) composite panel. Such FGWs are capable of focusing the wave energy along the stiffener and the bond layer, with limited radiation to the adjacent plate. The Semi-Analytical Finite Element (SAFE) approach is employed to understand the modal properties of FGWs that exist in the structure, and criteria are suggested to choose proper mode-frequency combination that is sensitive to adhesive defects. A shear horizontal type FGW mode is identified to be well suited, as it is easy to excite, and propagates with little dispersion and relatively low attenuation, while it retains sufficient energy around the bond layer. Both 3D Finite Element (FE) simulations and experiments are performed to study the interaction of the selected FGW mode with defects in the adhesive bond, and the results show excellent agreement. The reflection behavior and the wave-defect resonance phenomenon are investigated, which demonstrate the capability of the FGW for the bond line inspection.
33 citations
References
More filters
[...]
TL;DR: A comprehensive review on the state of the art of Lamb wave-based damage identification approaches for composite structures, addressing the advances and achievements in these techniques in the past decades, is provided in this paper.
Abstract: The guided Lamb wave is widely acknowledged as one of the most encouraging tools for quantitative identification of damage in composite structures, and relevant research has been conducted intensively since the 1980s. The main aim of this paper is to provide a comprehensive review on the state of the art of Lamb wave-based damage identification approaches for composite structures, addressing the advances and achievements in these techniques in the past decades. Major emphasis is placed on the unique characteristics and mechanisms of Lamb waves in laminated composites; approaches in wave mode selection, generation and collection; modelling and numerical simulation techniques; signal processing and identification algorithms; and sensor network technology for practical utility. Representative case studies are also briefly described in terms of various experimental validations and applications.
1,168 citations
"Feature-guided wave-based health mo..." refers background in this paper
[...]
[...]
TL;DR: This paper begins with an overview of damage prognosis, and a description of the basic methodology of guided-wave SHM, then reviews developments from the open literature in various aspects of this truly multidisciplinary field.
Abstract: In this paper we present the state of the art in the field of guided-wave structural health monitoring (SHM). We begin with an overview of damage prognosis, and a description of the basic methodology of guided-wave SHM. We then review developments from the open literature in various aspects of this truly multidisciplinary field. First, we discuss different transducer technologies, including both piezoelectric and non-conventional popular and non-conventional piezoelectric transducers. Next, we examine guided-wave theory, tracing its early history down to modern developments. Following this, we detail the efforts into models for guided-wave excitation by SHM transducers. Then, we review several signal processing related works. The next topic in Section 6 is guided-wave SHM system development, and we explore various packaging ideas, integrated solutions and efforts to examine robustness to different service conditions. We also highlight the broad spectrum of applications in which this technology has been tested. We then present some investigations that have attempted to combine guided-wave approaches with other complementary SHM technologies for better system performance. Finally, we propose desirable developments for further advancement of this field.
933 citations
"Feature-guided wave-based health mo..." refers background in this paper
[...]
[...]
TL;DR: The results indicate that Lamb waves may be used to find notches when the wavelength to notch depth ratio is on the order of 40, and the 2-D Fourier transform method is used to quantify Lamb wave interactions with defects.
Abstract: The interaction of individual Lamb waves with a variety of defects simulated by notches is investigated using finite-element analysis, and the results are checked experimentally. Excellent agreement is obtained. It is shown that a 2-D Fourier transform method may be used to quantify Lamb wave interactions with defects. The sensitivity of individual Lamb waves to particular notches is dependent on the frequency-thickness product, the mode type and order, and the geometry of the notch. The sensitivity of the Lamb modes a/sub 1/, alpha /sub 0/, and s/sub 0/ to simulated defects in different frequency-thickness regions is predicted as a function of the defect depth to plate thickness ratio and the results indicate that Lamb waves may be used to find notches when the wavelength to notch depth ratio is on the order of 40. Transmission ratios of Lamb waves across defects are highly frequency dependent. >
865 citations
"Feature-guided wave-based health mo..." refers background in this paper
[...]
Journal Article•
[...]
549 citations
"Feature-guided wave-based health mo..." refers background in this paper
[...]
[...]
01 Jan 2009
508 citations
"Feature-guided wave-based health mo..." refers background in this paper
[...]
Related Papers (5)
[...]
[...]