scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review

01 Jan 2005-Medical Teacher (Taylor & Francis)-Vol. 27, Iss: 1, pp 10-28
TL;DR: While research in this field needs improvement in terms of rigor and quality, high-fidelity medical simulations are educationally effective and simulation-based education complements medical education in patient care settings.
Abstract: SUMMARY Review date: 1969 to 2003, 34 years. Background and context: Simulations are now in widespread use in medical education and medical personnel evaluation. Outcomes research on the use and effectiveness of simulation technology in medical education is scattered, inconsistent and varies widely in methodological rigor and substantive focus. Objectives: Review and synthesize existing evidence in educational science that addresses the question, ‘What are the features and uses of high-fidelity medical simulations that lead to most effective learning?’. Search strategy: The search covered five literature databases (ERIC, MEDLINE, PsycINFO, Web of Science and Timelit) and employed 91 single search terms and concepts and their Boolean combinations. Hand searching, Internet searches and attention to the ‘grey literature’ were also used. The aim was to perform the most thorough literature search possible of peer-reviewed publications and reports in the unpublished literature that have been judged for academic quality. Inclusion and exclusion criteria: Four screening criteria were used to reduce the initial pool of 670 journal articles to a focused set of 109 studies: (a) elimination of review articles in favor of empirical studies; (b) use of a simulator as an educational assessment or intervention with learner outcomes measured quantitatively; (c) comparative research, either experimental or quasi-experimental; and (d) research that involves simulation as an educational intervention. Data extraction: Data were extracted systematically from the 109 eligible journal articles by independent coders. Each coder used a standardized data extraction protocol. Data synthesis: Qualitative data synthesis and tabular presentation of research methods and outcomes were used. Heterogeneity of research designs, educational interventions, outcome measures and timeframe precluded data synthesis using meta-analysis. Headline results: Coding accuracy for features of the journal articles is high. The extant quality of the published research is generally weak. The weight of the best available evidence suggests that high-fidelity medical simulations facilitate learning under the right conditions. These include the following:

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This article reviews and critically evaluates historical and contemporary research on simulation‐based medical education (SBME) and presents and discusses 12 features and best practices that teachers should know in order to use medical simulation technology to maximum educational benefit.
Abstract: Objectives This article reviews and critically evaluates historical and contemporary research on simulation-based medical education (SBME). It also presents and discusses 12 features and best practices of SBME that teachers should know in order to use medical simulation technology to maximum educational benefit. Methods This qualitative synthesis of SBME research and scholarship was carried out in two stages. Firstly, we summarised the results of three SBME research reviews covering the years 1969–2003. Secondly, we performed a selective, critical review of SBME research and scholarship published during 2003–2009. Results The historical and contemporary research synthesis is reported to inform the medical education community about 12 features and best practices of SBME: (i) feedback; (ii) deliberate practice; (iii) curriculum integration; (iv) outcome measurement; (v) simulation fidelity; (vi) skill acquisition and maintenance; (vii) mastery learning; (viii) transfer to practice; (ix) team training; (x) high-stakes testing; (xi) instructor training, and (xii) educational and professional context. Each of these is discussed in the light of available evidence. The scientific quality of contemporary SBME research is much improved compared with the historical record. Conclusions Development of and research into SBME have grown and matured over the past 40 years on substantive and methodological grounds. We believe the impact and educational utility of SBME are likely to increase in the future. More thematic programmes of research are needed. Simulation-based medical education is a complex service intervention that needs to be planned and practised with attention to organisational contexts. Medical Education 2010: 44: 50–63

1,459 citations

Journal ArticleDOI
07 Sep 2011-JAMA
TL;DR: In comparison with no intervention, technology-enhanced simulation training in health professions education is consistently associated with large effects for outcomes of knowledge, skills, and behaviors and moderate effects for patient-related outcomes.
Abstract: Context Although technology-enhanced simulation has widespread appeal, its effectiveness remains uncertain. A comprehensive synthesis of evidence may inform the use of simulation in health professions education. Objective To summarize the outcomes of technology-enhanced simulation training for health professions learners in comparison with no intervention. Data Source Systematic search of MEDLINE, EMBASE, CINAHL, ERIC, PsychINFO, Scopus, key journals, and previous review bibliographies through May 2011. Study Selection Original research in any language evaluating simulation compared with no intervention for training practicing and student physicians, nurses, dentists, and other health care professionals. Data Extraction Reviewers working in duplicate evaluated quality and abstracted information on learners, instructional design (curricular integration, distributing training over multiple days, feedback, mastery learning, and repetitive practice), and outcomes. We coded skills (performance in a test setting) separately for time, process, and product measures, and similarly classified patient care behaviors. Data Synthesis From a pool of 10 903 articles, we identified 609 eligible studies enrolling 35 226 trainees. Of these, 137 were randomized studies, 67 were nonrandomized studies with 2 or more groups, and 405 used a single-group pretest-posttest design. We pooled effect sizes using random effects. Heterogeneity was large (I2>50%) in all main analyses. In comparison with no intervention, pooled effect sizes were 1.20 (95% CI, 1.04-1.35) for knowledge outcomes (n = 118 studies), 1.14 (95% CI, 1.03-1.25) for time skills (n = 210), 1.09 (95% CI, 1.03-1.16) for process skills (n = 426), 1.18 (95% CI, 0.98-1.37) for product skills (n = 54), 0.79 (95% CI, 0.47-1.10) for time behaviors (n = 20), 0.81 (95% CI, 0.66-0.96) for other behaviors (n = 50), and 0.50 (95% CI, 0.34-0.66) for direct effects on patients (n = 32). Subgroup analyses revealed no consistent statistically significant interactions between simulation training and instructional design features or study quality. Conclusion In comparison with no intervention, technology-enhanced simulation training in health professions education is consistently associated with large effects for outcomes of knowledge, skills, and behaviors and moderate effects for patient-related outcomes.

1,420 citations


Cites background or methods from "Features and uses of high-fidelity ..."

  • ...Criterion B was fulfilled if (1) a randomized study concealed allocation or (2) an observational study controlled for another baseline learner characteristic....

    [...]

  • ...We sought to answer 2 questions: (1) To what extent are simulation technologies for training health care professionals associated with improved outcomes in comparison with no intervention? and (2) How do outcomes vary for different simulation instructional designs? Based on the strength of the theoretical foundations and currency in the field, we selected 5 instructional design features(2,9) (curricular integration, distributed practice, feedback, mastery learning, and range of difficulty) for subgroup analyses (see eBox for definitions; available at http://www ....

    [...]

  • ...Beyond descriptive analysis (2) 560 (91....

    [...]

  • ...When authors reported multiple measures of a single outcome (eg, multiple measures of efficiency), we selected in decreasing order of priority (1) the authordefined primary outcome; (2) a global or summary measure of effect; (3) the most clinically relevant measure; or (4) the mean of the measures reported....

    [...]

  • ...cComparability of cohorts criterion A was fulfilled if the study (1) was randomized or (2) controlled for a baseline learning outcome....

    [...]

Journal ArticleDOI
TL;DR: The aim of this paper is to critically review what is felt to be important about the role of debriefing in the field of simulation-based learning, how it has come about and developed over time, and the different styles or approaches that are used and how effective the process is.
Abstract: The aim of this paper is to critically review what is felt to be important about the role of debriefing in the field of simulation-based learning, how it has come about and developed over time, and the different styles or approaches that are used and how effective the process is. A recent systematic

1,351 citations

Journal ArticleDOI
TL;DR: Although the number of reports analyzed in this meta-analysis is small, these results show that SBME with DP is superior to traditional clinical medical education in achieving specific clinical skill acquisition goals.
Abstract: Purpose This article presents a comparison of the effectiveness of traditional clinical education toward skill acquisition goals versus simulation-based medical education (SBME) with deliberate practice (DP). Method This is a quantitative meta-analysis that spans 20 years, 1990 to 2010. A search strategy involving three literature databases, 12 search terms, and four inclusion criteria was used. Four authors independently retrieved and reviewed articles. Main outcome measures were extracted to calculate effect sizes.

1,311 citations

Journal ArticleDOI
10 Sep 2008-JAMA
TL;DR: Internet-based learning is associated with large positive effects compared with no intervention and with non-Internet instructional methods, suggesting effectiveness similar to traditional methods.
Abstract: Context The increasing use of Internet-based learning in health professions education may be informed by a timely, comprehensive synthesis of evidence of effectiveness. Objectives To summarize the effect of Internet-based instruction for health professions learners compared with no intervention and with non-Internet interventions. Data Sources Systematic search of MEDLINE, Scopus, CINAHL, EMBASE, ERIC, TimeLit, Web of Science, Dissertation Abstracts, and the University of Toronto Research and Development Resource Base from 1990 through 2007. Study Selection Studies in any language quantifying the association of Internet-based instruction and educational outcomes for practicing and student physicians, nurses, pharmacists, dentists, and other health care professionals compared with a no-intervention or non-Internet control group or a preintervention assessment. Data Extraction Two reviewers independently evaluated study quality and abstracted information including characteristics of learners, learning setting, and intervention (including level of interactivity, practice exercises, online discussion, and duration). Data Synthesis There were 201 eligible studies. Heterogeneity in results across studies was large (I2 ≥ 79%) in all analyses. Effect sizes were pooled using a random effects model. The pooled effect size in comparison to no intervention favored Internet-based interventions and was 1.00 (95% confidence interval [CI], 0.90-1.10; P Conclusions Internet-based learning is associated with large positive effects compared with no intervention. In contrast, effects compared with non-Internet instructional methods are heterogeneous and generally small, suggesting effectiveness similar to traditional methods. Future research should directly compare different Internet-based interventions.

1,241 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery and provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy.
Abstract: PURPOSE: A clear understanding of the intricate spatial relationships among the structures of the pelvic floor, rectum, and anal canal is essential for the treatment of numerous pathologic conditions. Virtual-reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereoscopic-vision, viewer-centered perspective, large angles of view, and interactivity. We describe a novel virtual reality-based model designed to teach anorectal and pelvic floor anatomy, pathology, and surgery. METHODS: A static physical model depicting the pelvic floor and anorectum was created and digitized at 1-mm intervals in a CT scanner. Multiple software programs were used along with endoscopic images to generate a realistic interactive computer model, which was designed to be viewed on a networked, interactive, virtual-reality display (CAVE® or lmmersaDesk®). A standard examination of ten basic anorectal and pelvic floor anatomy questions was administered to third-year (n = 6) and fourth-year (n = 7) surgical residents. A workshop using the Virtual Pelvic Floor Model was then given, and the standard examination was readministered so that it was possible to evaluate the effectiveness of the Digital Pelvic Floor Model as an educational instrument. RESULTS: Training on the Virtual Pelvic Floor Model produced substantial improvements in the overall average test scores for the two groups, with an overall increase of 41 percent (P = 0. 001) and 21 percent (P = 0.0007) for third-year and fourth-year residents, respectively. Resident evaluations after the workshop also confirmed the effectiveness of understanding pelvic anatomy using the Virtual Pelvic Floor Model. CONCLUSION: This model provides an innovative interactive educational framework that allows educators to overcome some of the barriers to teaching surgical and endoscopic principles based on understanding highly complex three-dimensional anatomy. Using this collaborative, shared virtual-reality environment, teachers and students can interact from locations world-wide to manipulate the components of this model to achieve the educational goals of this project along with the potential for virtual surgery.

38 citations

Journal ArticleDOI
TL;DR: Surgeons cannot correctly predict their standardized individual test result on the Advanced Dundee Psychomotor Tester, and are ambivalent in assessing the validity of ADEPT, irrespective of personal performance.
Abstract: Background This study was undertaken to establish the value of the Advanced Dundee Psychomotor Tester (ADEPT) as an objective real-time scoring system, correcting for subjective assessor opinion on endoscopic task performance. The main research questions were as follows: ⊙ Are surgeons good estimators of their own performance on ADEPT? ⊙ Do surgeons perceive ADEPT to be a valid instrument for measuring laparoscopic skills? ⊙ Does performance on ADEPT reflect innate psychomotor ability?

36 citations

Journal ArticleDOI
TL;DR: The anesthesia simulator provides an excellent tool for teaching conscious sedation skills to hospital nurses and the participants' test performance improved following the session, and they also rated the educational experience as excellent.
Abstract: Objective.This study reports on the efficacy of using the anesthesia simulator to teach sedation and analgesia to nurses. This provision of sedation and analgesia to a patient is accomplished with the goal of maintaining the ability of the patient to respond purposefully to auditory ortactile stimuli. Methods.Nurses working in areas of the hospital where conscious sedation is performed were the participants in this sedation and analgesia training course. Prior to the training session, the participants read the American Society of Anesthesiology Practice guidelines for sedation and analgesia by non-anesthesiologists.At the time of the training session, each participant completed a written pretest, had an introduction to sedation and analgesia with four clinical crisis teaching scenarios using the anesthesia simulator, a practical exam using the simulator, and a written post-test. Each participant was also given the opportunity to complete an evaluation of the session. Results.Twenty nurses completed the training session. The written tests had a maximum possible score of 30. Mean score on the written pretest was 22.9 ±3.54, and mean score on the written post-test was 26.0 ± 4.24 (p< 0.001). Seventeen of the twenty subjects scored higher on the post-test. Mean practical exam score was 5.5 of a possible 6.0. Mean participant rating of the education session was 3.75 (1 = poor, 4 =excellent). All but one participant rated the length of the training sessionas “about right.” Conclusions.The anesthesia simulator provides an excellent tool for teaching conscious sedation skills to hospital nurses. The participants' test performance improved following the session, and they also rated the educational experience as excellent.

35 citations