scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching

04 Oct 1993-Applied Physics Letters (American Institute of Physics)-Vol. 63, Iss: 14, pp 2002-2004
TL;DR: In this paper, a technique for patterning a self-assembled monolayer (SAM) on a gold substrate using an elastomer stamp was described, followed by selective etching in an aqueous, basic solution of cyanide ion and dissolved dioxygen (1M KOH, 0.1 M KCN).
Abstract: This letter describes a technique that can be used to produce well‐defined features of gold. The technique involves patterning of a self‐assembled monolayer (SAM) on a gold substrate using an elastomer stamp (fabricated either from a phenol‐formaldehyde polymer or polydimethylsiloxane), followed by selective etching in an aqueous, basic solution of cyanide ion and dissolved dioxygen (1M KOH, 0.1 M KCN). Electrically conductive structures of gold with dimensions as small as 1 μm have been produced using this procedure. Once a rubber stamp is fabricated, patterning and etching of gold substrates is straightforward. This method is convenient, does not require routine access to clean rooms and photolithographic equipment, and can be used to produce multiple copies of a pattern.
Citations
More filters
Journal ArticleDOI
30 Nov 2000-Nature
TL;DR: ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation, is proposed.
Abstract: The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules—a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics—rectification, amplification and storage—was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.

2,853 citations

Journal ArticleDOI
TL;DR: Soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and topattern and manipulate cells.
Abstract: ▪ Abstract Soft lithography, a set of techniques for microfabrication, is based on printing and molding using elastomeric stamps with the patterns of interest in bas-relief. As a technique for fabricating microstructures for biological applications, soft lithography overcomes many of the shortcomings of photolithography. In particular, soft lithography offers the ability to control the molecular structure of surfaces and to pattern the complex molecules relevant to biology, to fabricate channel structures appropriate for microfluidics, and to pattern and manipulate cells. For the relatively large feature sizes used in biology (≥50 μm), production of prototype patterns and structures is convenient, inexpensive, and rapid. Self-assembled monolayers of alkanethiolates on gold are particularly easy to pattern by soft lithography, and they provide exquisite control over surface biochemistry.

2,659 citations


Cites background or methods from "Features of gold having micrometer ..."

  • ...As the solvent (typically ethanol) evaporates, the alkanethiolate ink is deposited on the relief structure (104); it may also dissolve in the PDMS (110, 111)....

    [...]

  • ...μCP is a method for patterning by printing material using a PDMS stamp (Figure 2b) (31, 32, 104 , 105)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the structural phases and the growth of self-assembled monolayers (SAMs) are reviewed from a surface science perspective, with emphasis on simple model systems, and a summary of the techniques used for the study of SAMs is given.

2,374 citations

PatentDOI
24 Sep 2003-Science
TL;DR: The fluidic multiplexor as discussed by the authors is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs.
Abstract: High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.

2,292 citations

Journal ArticleDOI
TL;DR: This protocol provides an introduction to soft lithography—a collection of techniques based on printing, molding and embossing with an elastomeric stamp that has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics.
Abstract: This protocol provides an introduction to soft lithography--a collection of techniques based on printing, molding and embossing with an elastomeric stamp. Soft lithography provides access to three-dimensional and curved structures, tolerates a wide variety of materials, generates well-defined and controllable surface chemistries, and is generally compatible with biological applications. It is also low in cost, experimentally convenient and has emerged as a technology useful for a number of applications that include cell biology, microfluidics, lab-on-a-chip, microelectromechanical systems and flexible electronics/photonics. As examples, here we focus on three of the commonly used soft lithographic techniques: (i) microcontact printing of alkanethiols and proteins on gold-coated and glass substrates; (ii) replica molding for fabrication of microfluidic devices in poly(dimethyl siloxane), and of nanostructures in polyurethane or epoxy; and (iii) solvent-assisted micromolding of nanostructures in poly(methyl methacrylate).

1,954 citations


Cites background from "Features of gold having micrometer ..."

  • ...A large number of patterning techniques—microcontact printing (μCP...

    [...]

References
More filters
Book
01 Jan 1999
TL;DR: Cotton and Wilkinson's Advanced Inorganic Chemistry (AIC) as discussed by the authors is one of the most widely used inorganic chemistry books and has been used for more than a quarter century.
Abstract: For more than a quarter century, Cotton and Wilkinson's Advanced Inorganic Chemistry has been the source that students and professional chemists have turned to for the background needed to understand current research literature in inorganic chemistry and aspects of organometallic chemistry. Like its predecessors, this updated Sixth Edition is organized around the periodic table of elements and provides a systematic treatment of the chemistry of all chemical elements and their compounds. It incorporates important recent developments with an emphasis on advances in the interpretation of structure, bonding, and reactivity.From the reviews of the Fifth Edition:* "The first place to go when seeking general information about the chemistry of a particular element, especially when up-to-date, authoritative information is desired." -Journal of the American Chemical Society.* "Every student with a serious interest in inorganic chemistry should have [this book]." -Journal of Chemical Education.* "A mine of information . . . an invaluable guide." -Nature.* "The standard by which all other inorganic chemistry books are judged."-Nouveau Journal de Chimie.* "A masterly overview of the chemistry of the elements."-The Times of London Higher Education Supplement.* "A bonanza of information on important results and developments which could otherwise easily be overlooked in the general deluge of publications." -Angewandte Chemie.

12,231 citations

Book
01 Jan 1978

386 citations

01 Jan 1978

346 citations

Journal ArticleDOI
TL;DR: Using a number of techniques, such as micromachining, microwriting, electron-beam lithography, ion-beam, and ion beam, it is possible to form patterns of SAMs on the Au surface.
Abstract: on the surface of the gold block this etching. Using a number of techniques-micromachining, microwriting, electron-beam lithography, ion-beam lithography-it is possible to form patterns of SAMs on the Au surface. By combining these techniques for forming patterns with selective etching using the CN-/O2 solution, high-resolution patterns of gold on silicon can be fabricated with dimensions as small as I pm.5 One procedure used a pen to write patterns of hexadecanethiolate6 as monolayers on Au substrates. The pen, filled with

200 citations