scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Feedback for physicists: A tutorial essay on control

31 Aug 2005-Reviews of Modern Physics (American Physical Society)-Vol. 77, Iss: 3, pp 783-836
TL;DR: In this paper, a tutorial essay aims to give enough of the formal elements of control theory to satisfy the experimentalist designing or running a typical physics experiment and enough to satisfy a theorist wishing to understand its broader intellectual context.
Abstract: Feedback and control theory are important ideas that should form part of the education of a physicist but rarely do. This tutorial essay aims to give enough of the formal elements of control theory to satisfy the experimentalist designing or running a typical physics experiment and enough to satisfy the theorist wishing to understand its broader intellectual context. The level is generally simple, although more advanced methods are also introduced. Several types of applications are discussed, as the practical uses of feedback extend far beyond the simple regulation problems where it is most often employed. Sketches are then provided of some of the broader implications and applications of control theory, especially in biology, which are topics of active research.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a computer-based active interferometer stabilization method that can be set to an arbitrary phase difference and does not rely on modulation of the interfering beams is presented.
Abstract: We present a computer-based active interferometer stabilization method that can be set to an arbitrary phase difference and does not rely on modulation of the interfering beams. The scheme utilizes two orthogonal modes propagating through the interferometer with a constant phase difference between them to extract a common relative phase and generate a linear feedback signal. Switching times of 50 ms over a range of 0–6π radians at 632.8 nm are experimentally demonstrated. The relative interferometer phase can be stabilized up to several days to within ± 3°.

8 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore theoretically the navigation of an active particle based on delayed feedback control and calculate the mean arrival time analytically (exploiting a small-delay approximation) and by simulations.
Abstract: We explore theoretically the navigation of an active particle based on delayed feedback control. The delayed feedback enters in our expression for the particle orientation which, for an active particle, determines (up to noise) the direction of motion in the next time step. Here we estimate the orientation by comparing the delayed position of the particle with the actual one. This method does not require any real-time monitoring of the particle orientation and may thus be relevant also for controlling sub-micron sized particles, where the imaging process is not easily feasible. We apply the delayed feedback strategy to two experimentally relevant situations, namely, optical trapping and photon nudging. To investigate the performance of our strategy, we calculate the mean arrival time analytically (exploiting a small-delay approximation) and by simulations.

8 citations

01 Jan 2018
TL;DR: In this paper, Drobizhev et al. present an analysis of the spectral line shape of the bolometer, which is used for constructing the region of interest (ROI).
Abstract: Author(s): Drobizhev, Alexey | Advisor(s): Kolomensky, Yury G | Abstract: CUORE---the Cryogenic Underground Observatory for Rare Events---is an experiment searching for the neutrinoless double-beta ($0 u\beta\beta$) decay of $^{130}$Te, based at the Laboratori Nazionali del Gran Sasso in Italy. The detector consists of 988 5$\times$5$\times$5 cm$^3$ TeO$_2$ crystals operated as bolometers at temperatures of $\sim$10 mK inside the world's largest and most powerful dilution refrigerator. CUORE began physics data collection in the spring of 2017, and has recently released its first limit on the $0 u\beta\beta$ decay half-life of $^{130}$Te from 24 kg $\cdot$ y isotope exposure ($\sim$2 months live time). This result---T$^{0 u}_{1/2} g 1.5 \cdot 10^{25}$ y (Bayesian) and T$^{0 u}_{1/2} g 2.3 \cdot 10^{25}$ y (Frequentist) at $90 \%$ C.L.---is the most stringent to date and, together with two alternative analyses necessary to calculate it, forms the centerpiece of this thesis. In the future, with five years of live time, CUORE is projected to reach a median sensitivity of $9 \cdot 10^{25}$ y on this half-life. Besides the main physics conclusions, in this work I present an analysis modeling the spectral line shape of the bolometer, which is used for constructing the region of interest fit PDF. Additionally, I discuss the major CUORE hardware projects to which I have contributed in a significant way. Specifically, these are our world-leading cryostat, a cryogenic feedback temperature control system, a radon-free detector installation environment, and a room temperature detector calibration system.

8 citations


Cites background from "Feedback for physicists: A tutorial..."

  • ...In an ideal system, increasing the derivative gain decreases the overshoot and settling time, though there is no effect on steady state error, and only a minor effect on rise time and final stability [112, 113]....

    [...]

  • ...Having all three of these terms allows us to adjust our MV (heater) taking into account not only the current value of the error (temperature difference between the measurement and SP), but also the past behavior of the system and a prediction of the future based on the current trend [112, 113]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics, which is based on a quantum interferometric strategy that allows the verification of fluctuations in the presence of feedback control.
Abstract: Discrete quantum feedback control consists of a managed dynamics according to the information acquired by a previous measurement. Energy fluctuations along such dynamics satisfy generalized fluctuation relations, which are useful tools to study the thermodynamics of systems far away from equilibrium. Due to the practical challenge to assess energy fluctuations in the quantum scenario, the experimental verification of detailed fluctuation relations in the presence of feedback control remains elusive. We present a feasible method to experimentally verify detailed fluctuation relations for discrete feedback control quantum dynamics. Two detailed fluctuation relations are developed and employed. The method is based on a quantum interferometric strategy that allows the verification of fluctuation relations in the presence of feedback control. An analytical example to illustrate the applicability of the method is discussed. The comprehensive technique introduced here can be experimentally implemented at a microscale with the current technology in a variety of experimental platforms.

8 citations


Cites background from "Feedback for physicists: A tutorial..."

  • ...Due to the growing application of automation in industry, control theory plays a major role in modern engineering and technology [3], e....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present a method to correct deviations and thus optimize pulsatile flows in microfluidic experiments using two commercial pressure pumps, and demonstrate that this adapted input signal leads to an enhancement of the time-dependent flow of red blood cells in microchannels.
Abstract: Unsteady and pulsatile flows receive increasing attention due to their potential to enhance various microscale processes. Further, they possess significant relevance for microfluidic studies under physiological flow conditions. However, generating a precise time-dependent flow field with commercial, pneumatically operated pressure controllers remains challenging and can lead to significant deviations from the desired waveform. In this study, we present a method to correct such deviations and thus optimize pulsatile flows in microfluidic experiments using two commercial pressure pumps. Therefore, we first analyze the linear response of the systems to a sinusoidal pressure input, which allows us to predict the time-dependent pressure output for arbitrary pulsatile input signals. Second, we explain how to derive an adapted input signal, which significantly reduces deviations between the desired and actual output pressure signals of various waveforms. We demonstrate that this adapted pressure input leads to an enhancement of the time-dependent flow of red blood cells in microchannels. The presented method does not rely on any hardware modifications and can be easily implemented in standard pressure-driven microfluidic setups to generate accurate pulsatile flows with arbitrary waveforms.

8 citations

References
More filters
Book
01 Jan 1991
TL;DR: The author examines the role of entropy, inequality, and randomness in the design of codes and the construction of codes in the rapidly changing environment.
Abstract: Preface to the Second Edition. Preface to the First Edition. Acknowledgments for the Second Edition. Acknowledgments for the First Edition. 1. Introduction and Preview. 1.1 Preview of the Book. 2. Entropy, Relative Entropy, and Mutual Information. 2.1 Entropy. 2.2 Joint Entropy and Conditional Entropy. 2.3 Relative Entropy and Mutual Information. 2.4 Relationship Between Entropy and Mutual Information. 2.5 Chain Rules for Entropy, Relative Entropy, and Mutual Information. 2.6 Jensen's Inequality and Its Consequences. 2.7 Log Sum Inequality and Its Applications. 2.8 Data-Processing Inequality. 2.9 Sufficient Statistics. 2.10 Fano's Inequality. Summary. Problems. Historical Notes. 3. Asymptotic Equipartition Property. 3.1 Asymptotic Equipartition Property Theorem. 3.2 Consequences of the AEP: Data Compression. 3.3 High-Probability Sets and the Typical Set. Summary. Problems. Historical Notes. 4. Entropy Rates of a Stochastic Process. 4.1 Markov Chains. 4.2 Entropy Rate. 4.3 Example: Entropy Rate of a Random Walk on a Weighted Graph. 4.4 Second Law of Thermodynamics. 4.5 Functions of Markov Chains. Summary. Problems. Historical Notes. 5. Data Compression. 5.1 Examples of Codes. 5.2 Kraft Inequality. 5.3 Optimal Codes. 5.4 Bounds on the Optimal Code Length. 5.5 Kraft Inequality for Uniquely Decodable Codes. 5.6 Huffman Codes. 5.7 Some Comments on Huffman Codes. 5.8 Optimality of Huffman Codes. 5.9 Shannon-Fano-Elias Coding. 5.10 Competitive Optimality of the Shannon Code. 5.11 Generation of Discrete Distributions from Fair Coins. Summary. Problems. Historical Notes. 6. Gambling and Data Compression. 6.1 The Horse Race. 6.2 Gambling and Side Information. 6.3 Dependent Horse Races and Entropy Rate. 6.4 The Entropy of English. 6.5 Data Compression and Gambling. 6.6 Gambling Estimate of the Entropy of English. Summary. Problems. Historical Notes. 7. Channel Capacity. 7.1 Examples of Channel Capacity. 7.2 Symmetric Channels. 7.3 Properties of Channel Capacity. 7.4 Preview of the Channel Coding Theorem. 7.5 Definitions. 7.6 Jointly Typical Sequences. 7.7 Channel Coding Theorem. 7.8 Zero-Error Codes. 7.9 Fano's Inequality and the Converse to the Coding Theorem. 7.10 Equality in the Converse to the Channel Coding Theorem. 7.11 Hamming Codes. 7.12 Feedback Capacity. 7.13 Source-Channel Separation Theorem. Summary. Problems. Historical Notes. 8. Differential Entropy. 8.1 Definitions. 8.2 AEP for Continuous Random Variables. 8.3 Relation of Differential Entropy to Discrete Entropy. 8.4 Joint and Conditional Differential Entropy. 8.5 Relative Entropy and Mutual Information. 8.6 Properties of Differential Entropy, Relative Entropy, and Mutual Information. Summary. Problems. Historical Notes. 9. Gaussian Channel. 9.1 Gaussian Channel: Definitions. 9.2 Converse to the Coding Theorem for Gaussian Channels. 9.3 Bandlimited Channels. 9.4 Parallel Gaussian Channels. 9.5 Channels with Colored Gaussian Noise. 9.6 Gaussian Channels with Feedback. Summary. Problems. Historical Notes. 10. Rate Distortion Theory. 10.1 Quantization. 10.2 Definitions. 10.3 Calculation of the Rate Distortion Function. 10.4 Converse to the Rate Distortion Theorem. 10.5 Achievability of the Rate Distortion Function. 10.6 Strongly Typical Sequences and Rate Distortion. 10.7 Characterization of the Rate Distortion Function. 10.8 Computation of Channel Capacity and the Rate Distortion Function. Summary. Problems. Historical Notes. 11. Information Theory and Statistics. 11.1 Method of Types. 11.2 Law of Large Numbers. 11.3 Universal Source Coding. 11.4 Large Deviation Theory. 11.5 Examples of Sanov's Theorem. 11.6 Conditional Limit Theorem. 11.7 Hypothesis Testing. 11.8 Chernoff-Stein Lemma. 11.9 Chernoff Information. 11.10 Fisher Information and the Cram-er-Rao Inequality. Summary. Problems. Historical Notes. 12. Maximum Entropy. 12.1 Maximum Entropy Distributions. 12.2 Examples. 12.3 Anomalous Maximum Entropy Problem. 12.4 Spectrum Estimation. 12.5 Entropy Rates of a Gaussian Process. 12.6 Burg's Maximum Entropy Theorem. Summary. Problems. Historical Notes. 13. Universal Source Coding. 13.1 Universal Codes and Channel Capacity. 13.2 Universal Coding for Binary Sequences. 13.3 Arithmetic Coding. 13.4 Lempel-Ziv Coding. 13.5 Optimality of Lempel-Ziv Algorithms. Compression. Summary. Problems. Historical Notes. 14. Kolmogorov Complexity. 14.1 Models of Computation. 14.2 Kolmogorov Complexity: Definitions and Examples. 14.3 Kolmogorov Complexity and Entropy. 14.4 Kolmogorov Complexity of Integers. 14.5 Algorithmically Random and Incompressible Sequences. 14.6 Universal Probability. 14.7 Kolmogorov complexity. 14.9 Universal Gambling. 14.10 Occam's Razor. 14.11 Kolmogorov Complexity and Universal Probability. 14.12 Kolmogorov Sufficient Statistic. 14.13 Minimum Description Length Principle. Summary. Problems. Historical Notes. 15. Network Information Theory. 15.1 Gaussian Multiple-User Channels. 15.2 Jointly Typical Sequences. 15.3 Multiple-Access Channel. 15.4 Encoding of Correlated Sources. 15.5 Duality Between Slepian-Wolf Encoding and Multiple-Access Channels. 15.6 Broadcast Channel. 15.7 Relay Channel. 15.8 Source Coding with Side Information. 15.9 Rate Distortion with Side Information. 15.10 General Multiterminal Networks. Summary. Problems. Historical Notes. 16. Information Theory and Portfolio Theory. 16.1 The Stock Market: Some Definitions. 16.2 Kuhn-Tucker Characterization of the Log-Optimal Portfolio. 16.3 Asymptotic Optimality of the Log-Optimal Portfolio. 16.4 Side Information and the Growth Rate. 16.5 Investment in Stationary Markets. 16.6 Competitive Optimality of the Log-Optimal Portfolio. 16.7 Universal Portfolios. 16.8 Shannon-McMillan-Breiman Theorem (General AEP). Summary. Problems. Historical Notes. 17. Inequalities in Information Theory. 17.1 Basic Inequalities of Information Theory. 17.2 Differential Entropy. 17.3 Bounds on Entropy and Relative Entropy. 17.4 Inequalities for Types. 17.5 Combinatorial Bounds on Entropy. 17.6 Entropy Rates of Subsets. 17.7 Entropy and Fisher Information. 17.8 Entropy Power Inequality and Brunn-Minkowski Inequality. 17.9 Inequalities for Determinants. 17.10 Inequalities for Ratios of Determinants. Summary. Problems. Historical Notes. Bibliography. List of Symbols. Index.

45,034 citations


"Feedback for physicists: A tutorial..." refers background in this paper

  • ...Recent papers by Touchette and Lloyd (2000, 2004) begin to explore more formally these links and derive a fundamental relationship between the amount of control achievable (“decrease of entropy” in their formulation) and the “mutual information” (Cover and Thomas, 1991) between the dynamical system and the controller created by an initial interaction....

    [...]

Book
01 Jan 1987
TL;DR: Das Buch behandelt die Systemidentifizierung in dem theoretischen Bereich, der direkte Auswirkungen auf Verstaendnis and praktische Anwendung der verschiedenen Verfahren zur IdentifIZierung hat.
Abstract: Das Buch behandelt die Systemidentifizierung in dem theoretischen Bereich, der direkte Auswirkungen auf Verstaendnis und praktische Anwendung der verschiedenen Verfahren zur Identifizierung hat. Da ...

20,436 citations


"Feedback for physicists: A tutorial..." refers methods in this paper

  • ...For an introduction, see Dutton et al. 1997 ; for full details, see Ljung 1999 ....

    [...]

  • ...Alternatively, there are a number of methods that avoid the transfer function completely: from a given input u(t) and measured response y(t), they directly fit to the coefficients of a time-domain model or directly give pole and zero positions (Ljung, 1999)....

    [...]

  • ...Alternatively, there are a number of methods that avoid the transfer function completely: from a given input u t and measured response y t , they directly fit to the coefficients of a time-domain model or directly give pole and zero positions Ljung, 1999 ....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Abstract: The emergence of order in natural systems is a constant source of inspiration for both physical and biological sciences. While the spatial order characterizing for example the crystals has been the basis of many advances in contemporary physics, most complex systems in nature do not offer such high degree of order. Many of these systems form complex networks whose nodes are the elements of the system and edges represent the interactions between them. Traditionally complex networks have been described by the random graph theory founded in 1959 by Paul Erdohs and Alfred Renyi. One of the defining features of random graphs is that they are statistically homogeneous, and their degree distribution (characterizing the spread in the number of edges starting from a node) is a Poisson distribution. In contrast, recent empirical studies, including the work of our group, indicate that the topology of real networks is much richer than that of random graphs. In particular, the degree distribution of real networks is a power-law, indicating a heterogeneous topology in which the majority of the nodes have a small degree, but there is a significant fraction of highly connected nodes that play an important role in the connectivity of the network. The scale-free topology of real networks has very important consequences on their functioning. For example, we have discovered that scale-free networks are extremely resilient to the random disruption of their nodes. On the other hand, the selective removal of the nodes with highest degree induces a rapid breakdown of the network to isolated subparts that cannot communicate with each other. The non-trivial scaling of the degree distribution of real networks is also an indication of their assembly and evolution. Indeed, our modeling studies have shown us that there are general principles governing the evolution of networks. Most networks start from a small seed and grow by the addition of new nodes which attach to the nodes already in the system. This process obeys preferential attachment: the new nodes are more likely to connect to nodes with already high degree. We have proposed a simple model based on these two principles wich was able to reproduce the power-law degree distribution of real networks. Perhaps even more importantly, this model paved the way to a new paradigm of network modeling, trying to capture the evolution of networks, not just their static topology.

18,415 citations

Journal ArticleDOI
TL;DR: Developments in this field are reviewed, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Abstract: Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.

17,647 citations


"Feedback for physicists: A tutorial..." refers background in this paper

  • ...The structure of such networks is a topic of intense current interest (Albert and Barabási, 2002; Newman, 2003)....

    [...]