scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Feline Coronavirus Antivirals: A Review.

07 Sep 2021-Pathogenetics (Multidisciplinary Digital Publishing Institute)-Vol. 10, Iss: 9, pp 1150
TL;DR: In this article, a review of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known, highlights the molecules which could have a broader effect on different coronaviruses.
Abstract: Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Citations
More filters
Journal ArticleDOI
01 May 2022-Viruses
TL;DR: Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP, indicating that re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.
Abstract: As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1–4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.

5 citations

Journal ArticleDOI
TL;DR: The research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.
Abstract: CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. ABSTRACT The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.

3 citations

Journal ArticleDOI
27 Feb 2022-Viruses
TL;DR: The structure of PDCoV Mpro in complex with a Michael acceptor inhibitor revealed the mechanism of its inhibition of PD covirus Mpro, providing a basis for the development of broad-spectrum antiviral drugs against PD coV and other CoVs.
Abstract: The existing zoonotic coronaviruses (CoVs) and viral genetic variants are important microbiological pathogens that cause severe disease in humans and animals. Currently, no effective broad-spectrum antiviral drugs against existing and emerging CoVs are available. The CoV main protease (Mpro) plays an essential role in viral replication, making it an ideal target for drug development. However, the structure of the Deltacoronavirus Mpro is still unavailable. Porcine deltacoronavirus (PDCoV) is a novel CoV that belongs to the genus Deltacoronavirus and causes atrophic enteritis, severe diarrhea, vomiting and dehydration in pigs. Here, we determined the structure of PDCoV Mpro complexed with a Michael acceptor inhibitor. Structural comparison showed that the backbone of PDCoV Mpro is similar to those of alpha-, beta- and gamma-CoV Mpros. The substrate-binding pocket of Mpro is well conserved in the subfamily Coronavirinae. In addition, we also observed that Mpros from the same genus adopted a similar conformation. Furthermore, the structure of PDCoV Mpro in complex with a Michael acceptor inhibitor revealed the mechanism of its inhibition of PDCoV Mpro. Our results provide a basis for the development of broad-spectrum antivirals against PDCoV and other CoVs.

3 citations

Journal ArticleDOI
14 Aug 2022-Animals
TL;DR: In this article , a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect the ORF1a/1b gene of FCoV from cats with suspected FIP using neutral red as an indicator.
Abstract: Feline infectious peritonitis (FIP) is a worldwide fatal disease caused by a mutant feline coronavirus (FCoV). Simple and efficient molecular detection methods are needed. Here, sensitive, specific, rapid, and reliable colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect the ORF1a/1b gene of FCoV from cats with suspected FIP using neutral red as an indicator. Novel LAMP primers were specifically designed based on the gene of interest. The isothermal assay could visually detect FCoV at 58 °C for 50 min. The RT-LAMP assay was highly specific and had no cross-reactivity with other related feline viruses. The detection limit of FCoV detection by RT-LAMP was 20 fg/µL. A blind clinical test (n = 81) of the developed RT-LAMP procedure was in good agreement with the conventional PCR method. In the light of its performance specificity, sensitivity, and easy visualization, this neutral-red-based RT-LAMP approach would be a fruitful alternative molecular diagnostic tool for veterinary inspection of FCoV when combined with nucleotide sequencing or specific PCR to affirm the highly virulent FIP-associated FCoV.

2 citations

Journal ArticleDOI
TL;DR: In this article , polymannuronate monophosphate (PMPD) was shown to be the most effective component to block the interaction of spike to ACE2 with an IC50 of 85.5 nM.

1 citations

References
More filters
Journal ArticleDOI
TL;DR: This study evaluated the antiviral efficiency of five FAD-approved drugs including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two well-known broad-spectrum antiviral drugs remdesivir and favipiravir against a clinical isolate of 2019-nCoV in vitro.
Abstract: Dear Editor, In December 2019, a novel pneumonia caused by a previously unknown pathogen emerged in Wuhan, a city of 11 million people in central China. The initial cases were linked to exposures in a seafood market in Wuhan. As of January 27, 2020, the Chinese authorities reported 2835 confirmed cases in mainland China, including 81 deaths. Additionally, 19 confirmed cases were identified in Hong Kong, Macao and Taiwan, and 39 imported cases were identified in Thailand, Japan, South Korea, United States, Vietnam, Singapore, Nepal, France, Australia and Canada. The pathogen was soon identified as a novel coronavirus (2019-nCoV), which is closely related to sever acute respiratory syndrome CoV (SARS-CoV). Currently, there is no specific treatment against the new virus. Therefore, identifying effective antiviral agents to combat the disease is urgently needed. An efficient approach to drug discovery is to test whether the existing antiviral drugs are effective in treating related viral infections. The 2019-nCoV belongs to Betacoronavirus which also contains SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV). Several drugs, such as ribavirin, interferon, lopinavir-ritonavir, corticosteroids, have been used in patients with SARS or MERS, although the efficacy of some drugs remains controversial. In this study, we evaluated the antiviral efficiency of five FAD-approved drugs including ribavirin, penciclovir, nitazoxanide, nafamostat, chloroquine and two well-known broad-spectrum antiviral drugs remdesivir (GS5734) and favipiravir (T-705) against a clinical isolate of 2019nCoV in vitro. Standard assays were carried out to measure the effects of these compounds on the cytotoxicity, virus yield and infection rates of 2019-nCoVs. Firstly, the cytotoxicity of the candidate compounds in Vero E6 cells (ATCC-1586) was determined by the CCK8 assay. Then, Vero E6 cells were infected with nCoV2019BetaCoV/Wuhan/WIV04/2019 at a multiplicity of infection (MOI) of 0.05 in the presence of varying concentrations of the test drugs. DMSO was used in the controls. Efficacies were evaluated by quantification of viral copy numbers in the cell supernatant via quantitative real-time RT-PCR (qRT-PCR) and confirmed with visualization of virus nucleoprotein (NP) expression through immunofluorescence microscopy at 48 h post infection (p.i.) (cytopathic effect was not obvious at this time point of infection). Among the seven tested drugs, high concentrations of three nucleoside analogs including ribavirin (half-maximal effective concentration (EC50)= 109.50 μM, halfcytotoxic concentration (CC50) > 400 μM, selectivity index (SI) > 3.65), penciclovir (EC50= 95.96 μM, CC50 > 400 μM, SI > 4.17) and favipiravir (EC50= 61.88 μM, CC50 > 400 μM, SI > 6.46) were required to reduce the viral infection (Fig. 1a and Supplementary information, Fig. S1). However, favipiravir has been shown to be 100% effective in protecting mice against Ebola virus challenge, although its EC50 value in Vero E6 cells was as high as 67 μM, suggesting further in vivo studies are recommended to evaluate this antiviral nucleoside. Nafamostat, a potent inhibitor of MERS-CoV, which prevents membrane fusion, was inhibitive against the 2019-nCoV infection (EC50= 22.50 μM, CC50 > 100 μM, SI > 4.44). Nitazoxanide, a commercial antiprotozoal agent with an antiviral potential against a broad range of viruses including human and animal coronaviruses, inhibited the 2019-nCoV at a low-micromolar concentration (EC50= 2.12 μM; CC50 > 35.53 μM; SI > 16.76). Further in vivo evaluation of this drug against 2019-nCoV infection is recommended. Notably, two compounds remdesivir (EC50= 0.77 μM; CC50 > 100 μM; SI > 129.87) and chloroquine (EC50= 1.13 μM; CC50 > 100 μM, SI > 88.50) potently blocked virus infection at low-micromolar concentration and showed high SI (Fig. 1a, b). Remdesivir has been recently recognized as a promising antiviral drug against a wide array of RNA viruses (including SARS/MERS-CoV) infection in cultured cells, mice and nonhuman primate (NHP) models. It is currently under clinical development for the treatment of Ebola virus infection. Remdesivir is an adenosine analogue, which incorporates into nascent viral RNA chains and results in pre-mature termination. Our time-ofaddition assay showed remdesivir functioned at a stage post virus entry (Fig. 1c, d), which is in agreement with its putative antiviral mechanism as a nucleotide analogue. Warren et al. showed that in NHP model, intravenous administration of 10mg/kg dose of remdesivir resulted in concomitant persistent levels of its active form in the blood (10 μM) and conferred 100% protection against Ebola virus infection. Our data showed that EC90 value of remdesivir against 2019-nCoV in Vero E6 cells was 1.76 μM, suggesting its working concentration is likely to be achieved in NHP. Our preliminary data (Supplementary information, Fig. S2) showed that remdesivir also inhibited virus infection efficiently in a human cell line (human liver cancer Huh-7 cells), which is sensitive to 2019-nCoV. Chloroquine, a widely-used anti-malarial and autoimmune disease drug, has recently been reported as a potential broadspectrum antiviral drug. Chloroquine is known to block virus infection by increasing endosomal pH required for virus/ cell fusion, as well as interfering with the glycosylation of cellular receptors of SARS-CoV. Our time-of-addition assay demonstrated that chloroquine functioned at both entry, and at postentry stages of the 2019-nCoV infection in Vero E6 cells (Fig. 1c, d). Besides its antiviral activity, chloroquine has an immune-modulating activity, which may synergistically enhance its antiviral effect in vivo. Chloroquine is widely distributed in the whole body, including lung, after oral administration. The EC90 value of chloroquine against the 2019-nCoV in Vero

5,660 citations

Journal ArticleDOI
TL;DR: It is proposed that the immunomodulatory effect of hydroxychloroquine also may be useful in controlling the cytokine storm that occurs late-phase in critically ill SARS-CoV-2 infected patients.
Abstract: Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first broke out in 2019 and subsequently spread worldwide. Chloroquine has been sporadically used in treating SARS-CoV-2 infection. Hydroxychloroquine shares the same mechanism of action as chloroquine, but its more tolerable safety profile makes it the preferred drug to treat malaria and autoimmune conditions. We propose that the immunomodulatory effect of hydroxychloroquine also may be useful in controlling the cytokine storm that occurs late phase in critically ill patients with SARS-CoV-2. Currently, there is no evidence to support the use of hydroxychloroquine in SARS-CoV-2 infection. Methods The pharmacological activity of chloroquine and hydroxychloroquine was tested using SARS-CoV-2-infected Vero cells. Physiologically based pharmacokinetic (PBPK) models were implemented for both drugs separately by integrating their in vitro data. Using the PBPK models, hydroxychloroquine concentrations in lung fluid were simulated under 5 different dosing regimens to explore the most effective regimen while considering the drug's safety profile. Results Hydroxychloroquine (EC50 = 0.72 μM) was found to be more potent than chloroquine (EC50 = 5.47 μM) in vitro. Based on PBPK models results, a loading dose of 400 mg twice daily of hydroxychloroquine sulfate given orally, followed by a maintenance dose of 200 mg given twice daily for 4 days is recommended for SARS-CoV-2 infection, as it reached 3 times the potency of chloroquine phosphate when given 500 mg twice daily 5 days in advance. Conclusions Hydroxychloroquine was found to be more potent than chloroquine to inhibit SARS-CoV-2 in vitro.

2,156 citations

Journal ArticleDOI
08 May 1997-Nature
TL;DR: It is estimated that 2.3–3.1 years of a completely inhibitory treatment would be required to eliminate HIV-1 from these compartments, and even longer treatment may be needed because of the possible existence of undetected viral compartments or sanctuary sites.
Abstract: Analysis of changes in viral load after initiation of treatment with potent antiretroviral agents has provided substantial insight into the dynamics of human immunodeficiency virus type 1 (HIV-1). The concentration of HIV-1 in plasma drops by approximately 99% in the first two weeks of treatment owing to the rapid elimination of free virus with a half-life (t1/2) of < or =6 hours and loss of productively infected cells with a t1/2 of 1.6 days. Here we show that with combination therapy this initial decrease is followed by a slower second-phase decay of plasma viraemia. Detailed mathematical analysis shows that the loss of long-lived infected cells (t1/2 of 1-4 weeks) is a major contributor to the second phase, whereas the activation of latently infected lymphocytes (t1/2 of 0.5-2 weeks) is only a minor source. Based on these decay characteristics, we estimate that 2.3-3.1 years of a completely inhibitory treatment would be required to eliminate HIV-1 from these compartments. To eradicate HIV-1 completely, even longer treatment may be needed because of the possible existence of undetected viral compartments or sanctuary sites.

1,833 citations

Journal ArticleDOI
TL;DR: Evaluated the antiviral effect of HCQ against SARS-CoV-2 infection in comparison to CQ in vitro and concluded that CQ appears to be the drug of choice for large-scale use due to its availability, proven safety record, and a relatively low cost.
Abstract: Dear Editor, The outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/2019-nCoV) poses a serious threat to global public health and local economies. As of March 3, 2020, over 80,000 cases have been confirmed in China, including 2946 deaths as well as over 10,566 confirmed cases in 72 other countries. Such huge numbers of infected and dead people call for an urgent demand of effective, available, and affordable drugs to control and diminish the epidemic. We have recently reported that two drugs, remdesivir (GS-5734) and chloroquine (CQ) phosphate, efficiently inhibited SARS-CoV-2 infection in vitro. Remdesivir is a nucleoside analog prodrug developed by Gilead Sciences (USA). A recent case report showed that treatment with remdesivir improved the clinical condition of the first patient infected by SARS-CoV-2 in the United States, and a phase III clinical trial of remdesivir against SARSCoV-2 was launched in Wuhan on February 4, 2020. However, as an experimental drug, remdesivir is not expected to be largely available for treating a very large number of patients in a timely manner. Therefore, of the two potential drugs, CQ appears to be the drug of choice for large-scale use due to its availability, proven safety record, and a relatively low cost. In light of the preliminary clinical data, CQ has been added to the list of trial drugs in the Guidelines for the Diagnosis and Treatment of COVID-19 (sixth edition) published by National Health Commission of the People’s Republic of China. CQ (N4-(7-Chloro-4-quinolinyl)-N1,N1-diethyl-1,4pentanediamine) has long been used to treat malaria and amebiasis. However, Plasmodium falciparum developed widespread resistance to it, and with the development of new antimalarials, it has become a choice for the prophylaxis of malaria. In addition, an overdose of CQ can cause acute poisoning and death. In the past years, due to infrequent utilization of CQ in clinical practice, its production and market supply was greatly reduced, at least in China. Hydroxychloroquine (HCQ) sulfate, a derivative of CQ, was first synthesized in 1946 by introducing a hydroxyl group into CQ and was demonstrated to be much less (~40%) toxic than CQ in animals. More importantly, HCQ is still widely available to treat autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Since CQ and HCQ share similar chemical structures and mechanisms of acting as a weak base and immunomodulator, it is easy to conjure up the idea that HCQ may be a potent candidate to treat infection by SARS-CoV-2. Actually, as of February 23, 2020, seven clinical trial registries were found in Chinese Clinical Trial Registry (http://www.chictr.org.cn) for using HCQ to treat COVID-19. Whether HCQ is as efficacious as CQ in treating SARS-CoV-2 infection still lacks the experimental evidence. To this end, we evaluated the antiviral effect of HCQ against SARS-CoV-2 infection in comparison to CQ in vitro. First, the cytotoxicity of HCQ and CQ in African green monkey kidney VeroE6 cells (ATCC-1586) was measured by standard CCK8 assay, and the result showed

1,704 citations

Journal ArticleDOI
TL;DR: Chloroquine is effective in preventing the spread of SARS CoV in cell culture and the indirect immunofluorescence assay described herein represents a simple and rapid method for screening SARS-CoV antiviral compounds.
Abstract: Severe acute respiratory syndrome (SARS) is caused by a newly discovered coronavirus (SARS-CoV). No effective prophylactic or post-exposure therapy is currently available. We report, however, that chloroquine has strong antiviral effects on SARS-CoV infection of primate cells. These inhibitory effects are observed when the cells are treated with the drug either before or after exposure to the virus, suggesting both prophylactic and therapeutic advantage. In addition to the well-known functions of chloroquine such as elevations of endosomal pH, the drug appears to interfere with terminal glycosylation of the cellular receptor, angiotensin-converting enzyme 2. This may negatively influence the virus-receptor binding and abrogate the infection, with further ramifications by the elevation of vesicular pH, resulting in the inhibition of infection and spread of SARS CoV at clinically admissible concentrations. Chloroquine is effective in preventing the spread of SARS CoV in cell culture. Favorable inhibition of virus spread was observed when the cells were either treated with chloroquine prior to or after SARS CoV infection. In addition, the indirect immunofluorescence assay described herein represents a simple and rapid method for screening SARS-CoV antiviral compounds.

1,532 citations