scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fibroblast growth factors, their receptors and signaling.

01 Sep 2000-Endocrine-related Cancer (Bioscientifica Ltd)-Vol. 7, Iss: 3, pp 165-197
TL;DR: FGF signaling also appears to play a role in tumor growth and angiogenesis, and autocrine FGF signaling may be particularly important in the progression of steroid hormone-dependent cancers to a hormone-independent state.
Abstract: Fibroblast growth factors (FGFs) are small polypeptide growth factors, all of whom share in common certain structural characteristics, and most of whom bind heparin avidly. Many FGFs contain signal peptides for secretion and are secreted into the extracellular environment, where theycan bind to the heparan-like glycosaminoglycans (HLGAGs) of the extracellular matrix (ECM). From this reservoir, FGFs mayact directlyon target cells, or theycan be released through digestion of the ECM or the activityof a carrier protein, a secreted FGF binding protein. FGFs bind specific receptor tyrosine kinases in the context of HLGAGs and this binding induces receptor dimerization and activation, ultimatelyresulting in the activation of various signal transduction cascades. Some FGFs are potent angiogenic factors and most playimportant roles in embry onic development and wound healing. FGF signaling also appears to playa role in tumor growth and angiogenesis, and autocrine FGF signaling maybe particularlyimportant in the progression of steroid hormone-dependent cancers to a hormone-independent state.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: FGF9 can affect Runx2 gene promoter activity in MC3T3‐E1 and C2C12 cells, and the action of FGF9 appears to depend partly on the mitogen‐activated protein kinase kinase/mitogen‐ activated protein Kinase pathways in C2 C12 cells.
Abstract: BACKGROUND Fibroblast growth factor 9 (FGF9), expressed in brain, kidney and developing skeletal tissues, can physiologically inhibit endochondral ossification; but little is known about how FGF9 affects osteoblasts and its detailed regulatory mechanism. Here we examined the effect of FGF9 on the activity of the murine Runt-related transcription factor 2 (Runx2) gene promoter in preosteoblast MC3T3-E1 and premyoblast C2C12 cells. METHODS Plasmids containing the Runx2 promoter region were transfected into MC3T3-E1 and C2C12 cells and stably transfected cell lines were established. The method of luciferase reporter gene activation was used to examine the effects of FGF9 on the promoter activity. RESULTS FGF9 (10 ng/ml) increased Runx2 promoter activity in MC3T3-E1 cells. When MC3T3-E1 cells were treated with FGF9 plus the various inhibitors or activator of the intracellular signaling transducation pathways, including 10 micromol/L U0126 (the inhibitor of mitogen-activated protein kinase kinase), 10 micromol/L SB203580 (the inhibitor of p38/mitogen activated protein kinase), or 1 micromol/L C6 ceramide (an activator of mitogen activated protein kinase), the luciferase expression did not change significantly compared with that of the cells treated with FGF9 only. However, when C2C12 cells were treated with 10 ng/ml FGF9, Runx2 gene promoter activity first decreased and then increased over a period of 1 to 5 days. Among the above inhibitors, only U0126 (10 micromol/L) completely blocked the effects of FGF9 on Runx2 gene promoter activity. CONCLUSIONS Our data showed that FGF9 can affect Runx2 gene promoter activity in MC3T3-E1 and C2C12 cells. The action of FGF9 appears to depend partly on the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathways in C2C12 cells.

3 citations

Book ChapterDOI
01 Jan 2015
TL;DR: This chapter will focus on the review of the recent studies regarding DPSC niches and particularly their regulation.
Abstract: Dental stem cells exist in dental tissues. Of those that have been isolated and better studied are those reside in dental pulp. These dental tissue-derived mesenchymal stem/stromal cells (MSCs) shared similar characteristics to other MSCs , yet, they are subtly different. The markers to identify MSC populations in situ as well as after isolation into cell cultures have been elusive. A number of markers have been used to identify dental pulp stem cells (DPSCs ) in situ such as STRO-1 , CD146 , 3G5, NOTCH3 and NG2 . Certain subpopulations based on some marker expression have been studied in vitro and tested for pulp-dentin tissue regeneration. Various approaches have been utilized to study the cellular and molecular mechanisms involved in the DPSC interactions with its niche components such as extracellular matrix . This chapter will focus on the review of the recent studies regarding DPSC niches and particularly their regulation.

3 citations

Journal ArticleDOI
TL;DR: The accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E, and the bF GF angiogenic protein may be an attractive target to treat ARMD.
Abstract: Age-related macular degeneration (ARMD) is the leading cause of vision loss in developed countries. Hallmarks of the disease are well known; indeed, this pathology is characterized by lipofuscin accumulation, is principally composed of lipid-containing residues of lysosomal digestion. The N-retinyl-N-retinylidene ethanolamine (A2E) retinoid which is thought to be a cytotoxic component for RPE is the best-characterized component of lipofuscin so far. Even if no direct correlation between A2E spatial distribution and lipofuscin fluorescence has been established in aged human RPE, modified forms or metabolites of A2E could be involved in ARMD pathology. Mitogen-activated protein kinase (MAPK) pathways have been involved in many pathologies, but not in ARMD. Therefore, we wanted to analyze the effects of A2E on MAPKs in polarized ARPE19 and isolated mouse RPE cells. We showed that long-term exposure of polarized ARPE19 cells to low A2E dose induces a strong decrease of the extracellular signal-regulated kinases’ (ERK1/2) activity. In addition, we showed that A2E, via ERK1/2 decrease, induces a significant decrease of the retinal pigment epithelium-specific protein 65kDa (RPE65) expression in ARPE19 cells and isolated mouse RPE. In the meantime, we showed that the decrease of ERK1/2 activity mediates an increase of basic fibroblast growth factor (bFGF) mRNA expression and secretion that induces an increase in phagocytosis via a paracrine effect. We suggest that the accumulation of deposits coming from outer segments (OS) could be explained by both an increase of bFGF-induced phagocytosis and by the decrease of clearance by A2E. The bFGF angiogenic protein may therefore be an attractive target to treat ARMD.

3 citations


Cites background from "Fibroblast growth factors, their re..."

  • ...Secreted bFGF binds to heparin sulfate that first stabilizes the protein, besides creating a pool of angiogenic growth factors susceptible to be mobilized directly from the extracellular matrix to target cells (Powers et al., 2000)....

    [...]

Journal ArticleDOI
TL;DR: The finding demonstrated that circ_0041732 had the potential as a therapeutic target for TNBC, and suppressed TNBC cell tumor properties by decreasing FGF5 expression through miR-149-5p.
Abstract: Background Triple-negative breast cancer (TNBC) is a subtype of breast cancers with a high recurrence and mortality. The important factors promoting the TNBC process have not been fully identified. In this research, the role of a TNBC-related circular RNA (circRNA), circ_0041732, was revealed in TNBC cell tumor properties. Methods The expression levels of circ_0041732, microRNA-149-5p (miR-149-5p) and fibroblast growth factor 5 (FGF5) were detected by quantitative real-time polymerase chain reaction. The protein expression was determined by Western blot analysis or immunohistochemistry assay. Cell proliferation was detected by cell counting kit-8 and cell colony formation assays. Cell apoptosis was analyzed by flow cytometry and caspase-3 activity assays. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. Cell angiogenic capacity was investigated by a tube formation assay. The targeting relationship between miR-149-5p and circ_0041732 or FGF5 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of circ_0041732 knockdown on tumor formation were determined by an in vivo assay. Results Circ_0041732 and FGF5 expression were significantly upregulated, whereas miR-149-5p was downregulated in TNBC tissues and cells compared with normal breast tissues and cells, respectively. Circ_0041732 silencing inhibited TNBC cell proliferation, migration, invasion, and tube formation, but induced apoptosis. Additionally, circ_0041732 regulated TNBC cell tumor properties by binding to miR-149-5p. MiR-149-5p also modulated TNBC cell tumor properties by targeting FGF5. Furthermore, circ_0041732 knockdown hindered tumor formation in vivo. Conclusion Circ_0041732 silencing suppressed TNBC cell tumor properties by decreasing FGF5 expression through miR-149-5p. This finding demonstrated that circ_0041732 had the potential as a therapeutic target for TNBC.

3 citations

Book ChapterDOI
22 May 2013
TL;DR: In the recent years, the mechanism of chondrocyte differentiation has come to be well understood owing to the advancement of molecular biology, and researches have rapidly progressed for bioengineering or tissue engineering technique, where it is aimed to regenerate/reconstruct tissues by simulating the process of cell or tissue differentiation during development.
Abstract: Cartilage degeneration caused by osteoarthritis (OA) and trauma is of great clinical conse‐ quence, given the limited intrinsic healing potential of the cartilaginous tissue. OA is the most common joint disease in world populations. Pain during activities of daily living is a common presenting complaint of individuals with OA and is also associated with a decrease in quality of life for people with OA. Its incidence increases with age, and thus this degenerative disease is a major problem in ageing populations. OA is a multifactorial disease of the joints charac‐ terized by gradual loss of articular cartilage. In the recent years, the mechanism of chondrocyte differentiation has come to be well understood owing to the advancement of molecular biology, and researches have rapidly progressed for bioengineering or tissue engineering technique, where it is aimed to regenerate/reconstruct tissues by simulating the process of cell or tissue differentiation during development. Articular cartilage is composed mainly of collagen/proteoglycan (PG) and water. PG accounts for about 7 10% of cartilage tissues, and aggrecan, which is a member of PG representing macromolecules, plays a key role for mitigation of mechanical stress imposed on the cartilage tissues (Maroudas, 1979). A fall in PG concentration is one of the first changes in OA with consequent deleterious effects on the mechanical behaviour of cartilaginous tissues (McDevitt & Muir, 1976, Venn & Maroudas 1977). Among the components of aggrecan, negatively-charged Glycosaminoglycan (GAG) produces a high osmotic pressure in the cartilage tissue, and water is therefore absorbed in the cartilage tissues. As a result, the collagen networks are inflated, and the cartilage tissues acquire elastic resistance characteristic to cartilage tissues to protect from compression force. Thus, the

3 citations


Cites background from "Fibroblast growth factors, their re..."

  • ...This proteins are known to induce chemotactic, angiogenic, and mitogenic activity, and play an important role in early differentiation and development (Powers et al., 2000, Burgess & Maciag, 1989)....

    [...]

References
More filters
Journal ArticleDOI
22 Feb 1991-Cell
TL;DR: It is demonstrated that free heparin and heparan sulfate can reconstitute a low affinity receptor that is, in turn, required for the high affinity binding of bFGF.

2,448 citations

Journal ArticleDOI
16 Feb 1995-Nature
TL;DR: This work highlights conserved protein domains that act as key regulatory participants in many of these different signalling pathways in multicellular organisms.
Abstract: Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.

2,433 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...One way these recruited target proteins may be localized to the activated receptor is through the interaction between their Src-homology 2 (SH2) domains and specific phosphotyrosine residues on the activated receptor (Pawson 1995)....

    [...]

  • ...Phosphorylated tyrosine residues, in turn, recruit other signaling molecules to the activated receptors and propagate the signal through many possible transduction pathways (Pawson 1995)....

    [...]

Journal ArticleDOI
TL;DR: Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of Thalidomid-treated embryos.
Abstract: Thalidomide is a potent teratogen causing dysmelia (stunted limb growth) in humans. We have demonstrated that orally administered thalidomide is an inhibitor of angiogenesis induced by basic fibroblast growth factor in a rabbit cornea micropocket assay. Experiments including the analysis of thalidomide analogs revealed that the antiangiogenic activity correlated with the teratogenicity but not with the sedative or the mild immunosuppressive properties of thalidomide. Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of thalidomide-treated embryos. These experiments shed light on the mechanism of thalidomide's teratogenicity and hold promise for the potential use of thalidomide as an orally administered drug for the treatment of many diverse diseases dependent on angiogenesis.

2,364 citations

Journal ArticleDOI
TL;DR: It is demonstrated that FGF 1 is the only FGF that can activate all FGF receptor splice variants and the relative activity of all the other members of the FGF family is determined.

2,066 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...†From Ornitz et al. (1996), except where stated; ‡From Koga et al. (1995); §From Miralles et al. (1999); ¶From Xu et al. (1999). topologically identical to interleukin-1β (IL-1β) (Zhu et al. 1991), with which some members also share the feature of secretion by an endoplasmic reticulum…...

    [...]

  • ...Mutation of all four cysteines to serines results in a protein with the same secondary structure and equally mitogenic for 3T3 cells as the wild-type FGF-2 (Foxet al. 1988), suggesting that the formation of disulfide bridges is not important for the secondary structure and mitogenic activity of…...

    [...]

  • ...Ornitz et al. (1996) determined the specificity of different FGFs for different receptor isoforms by overexpressing these isoforms in Baf3 cells, which do not normally express FGFRs, and assaying for [3H]thymidine incorporation in these cells following treatment with different FGFs (see Table 2)....

    [...]

  • ...1, IIIb 100 60 34 16 4 5 6 4 4 1, IIIc 100 104 0 102 59 55 0 1 21 2, IIIb 100 9 45 15 5 5 81 4 7 2, IIIc 100 64 4 94 25 61 2.5 16 89 3, IIIb 100 1 2 1 1 1 1 1 42 3, IIIc 100 107 1 69 12 9 1 41 96 4 100 113 6 108 7 79 2 76 75 Modified from Ornitz et al. (1996)....

    [...]

Journal ArticleDOI

1,994 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...Defining features of the FGF family are a strong affinity for heparin and HLGAGs (Burgess & Maciag 1989), as well as a central core of 140 amino acids that is highly homologous between different family members....

    [...]