scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fibroblast growth factors, their receptors and signaling.

01 Sep 2000-Endocrine-related Cancer (Bioscientifica Ltd)-Vol. 7, Iss: 3, pp 165-197
TL;DR: FGF signaling also appears to play a role in tumor growth and angiogenesis, and autocrine FGF signaling may be particularly important in the progression of steroid hormone-dependent cancers to a hormone-independent state.
Abstract: Fibroblast growth factors (FGFs) are small polypeptide growth factors, all of whom share in common certain structural characteristics, and most of whom bind heparin avidly. Many FGFs contain signal peptides for secretion and are secreted into the extracellular environment, where theycan bind to the heparan-like glycosaminoglycans (HLGAGs) of the extracellular matrix (ECM). From this reservoir, FGFs mayact directlyon target cells, or theycan be released through digestion of the ECM or the activityof a carrier protein, a secreted FGF binding protein. FGFs bind specific receptor tyrosine kinases in the context of HLGAGs and this binding induces receptor dimerization and activation, ultimatelyresulting in the activation of various signal transduction cascades. Some FGFs are potent angiogenic factors and most playimportant roles in embry onic development and wound healing. FGF signaling also appears to playa role in tumor growth and angiogenesis, and autocrine FGF signaling maybe particularlyimportant in the progression of steroid hormone-dependent cancers to a hormone-independent state.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed the development of recombinant polypeptides for wound and fracture healing, cardiovascular diseases and neurodegenerative diseases using fibroblast growth factor 1 (FGF-1).
Abstract: Human fibroblast growth factor 1 (FGF-1) is one of the best characterized members of the FGF superfamily. FGF-1 is a powerful mitogen exhibiting strong action on numerous different cell types. It plays a role in various stages of development and morphogenesis, as well as in angiogenesis and wound healing processes. Engineering of FGFs can bring many advantages. Design and construction of different mutants can contribute to a better understanding of the mechanism of action of protein growth factors. Moreover, application of FGFs as recombinant polypeptides in the treatment of wound and fracture healing, cardiovascular diseases and neurodegenerative diseases seems to be a rational medical approach. However, low thermal stability and high sensitivity to proteases limit the potential pharmaceutical use of wild-type FGFs. Thus, advanced protein design techniques and recombinant protein production can help to obtain new variants of FGFs with radically increased thermodynamic stability, prolonged half-life and improved proteolytic resistance. Such studies can provide a good starting point to convert short-lived and/or sensitive growth factors to effective therapeutic proteins.

69 citations

Journal ArticleDOI
TL;DR: The results indicate that the main role of heparin in FGF-induced signaling is to protect this naturally unstable protein against heat and/or proteolytic degradation and that hepar in is not essential for a direct FGF1-FGFR interaction and receptor activation.

69 citations

Journal ArticleDOI
TL;DR: The EMT may contribute to the histogenesis of sclerosing cholangiopathy, and the biliary innate immune response to dsRNA viruses induces biliary epithelial cells to undergo EMT via the production of bFGF and the increased susceptibility to TGF‐β1 caused by the down‐regulation of Bambi expression.
Abstract: Infections of Reoviridae consisting of a double-stranded RNA (dsRNA) genome and the biliary innate immune response to dsRNA are implicated in the aetiopathogenesis of biliary atresia (BA). Epithelial–mesenchymal transition (EMT) has recently been proposed as a mechanism behind the sclerosing cholangitis in BA. We hypothesized that the innate immune response to dsRNA in biliary epithelial cells plays an important role in peribiliary fibrosis via biliary EMT. Experiments using cultured human biliary epithelial cells revealed that stimulation with poly(I : C) (a synthetic analogue of viral dsRNA) increased the expression of basic fibroblast growth factor (bFGF, an EMT-inducer), S100A4 (a mesenchymal marker) and Snail (a transcriptional factor), and decreased that of epithelial markers (biliary-type cytokeratin 19 and E-cadherin) and Bambi (TGF-β1 pseudoreceptor). The expression of TGF-β1 (EMT-inducer) and vimentin (a mesenchymal marker) was not affected by poly(I : C). Both EMT-inducers, bFGF and TGF-β1, evoked a decrease and increase in the expression of the epithelial markers and of vimentin respectively, and the expression of Bambi was down-regulated on stimulation with bFGF. Combined treatment with bFGF and TGF-β1 quickly and completely induced a transformation of morphology as well as change from epithelial to mesenchymal features in cultured biliary epithelial cells. Immunohistochemistry revealed that biliary epithelial cells lining extrahepatic bile ducts and peribiliary glands in BA frequently show a lack of epithelial markers and an aberrant expression of vimentin. Moreover, the biliary epithelium showing sclerosing cholangitis expressed bFGF accompanied by bFGF-positive mononuclear cells. In conclusion, the EMT may contribute to the histogenesis of sclerosing cholangiopathy, and the biliary innate immune response to dsRNA viruses induces biliary epithelial cells to undergo EMT via the production of bFGF and the increased susceptibility to TGF-β1 caused by the down-regulation of Bambi expression. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

69 citations


Cites background from "Fibroblast growth factors, their re..."

  • ...FGF/FGFR signalling regulates important intracellular signal-transduction pathways mediating cell proliferation, differentiation, survival and migration in a variety of cell types [33]....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that increased FGFR4 and reduced Sef may be critical FGF alterations associated with prostate cancer progression and may also have a role in the tumour response to FGFR inhibition and warrants further investigation.
Abstract: Multiple fibroblast growth factor (FGF) axis alterations are known to occur in prostate cancer. Here we simultaneously profiled key components of this axis to determine their relevance in disease progression. An optimized immunohistochemistry protocol was used in expression analysis of FGF2, FGF8, FGFR1, FGFR4, and Sef (similar expression to FGF) in a single TMA of prostate cancer. FGF ligands and receptors were overexpressed in cancers compared to benign samples (p < 0.0001), while Sef expression was reduced (p < 0.0001). There was a positive association between higher grades and increased FGFR4 (p = 0.02), FGF2, and FGF8 (p = 0.002 and p < 0.0001). Sef expression was progressively lower with increasing grade (p = 0.005). Clinical stage was positively associated with FGF2, FGF8, and FGFR4 expression (p = 0.005, 0.03, and 0.012) but not with FGFR1 or Sef expression. Only reduced Sef was associated with bone metastasis (p = 0.02) and was also predictive of subsequent metastasis in initially localized tumours (p = 0.004). Down-regulation of Sef and increased FGFR4 were also the only independent variables associated with disease-specific survival (HR 1.73, p = 0.04 and HR 0.56, p = 0.01). In in vitro studies, silencing Sef enhanced the cell response to FGFs (p < 0.001) and substantially mitigated the effectiveness of an FGFR1 inhibitor. Conversely, increased Sef blocked the response to FGFs and had a comparable suppressive effect to the inhibitor. This study demonstrates that increased FGFR4 and reduced Sef may be critical FGF alterations associated with prostate cancer progression. Sef may also have a role in the tumour response to FGFR inhibition and warrants further investigation in this context.

69 citations

Journal ArticleDOI
TL;DR: The findings that elevated extracellular levels of IL-6 or factors positively coupled to cAMP result in increased CXCR4 cell surface expression levels and subsequent SDF-1-dependent chemotaxis in central nervous system astrocytes point to a crucial role of this chemokine during reactive gliosis and human immunodeficiency virus-mediated dementia.

68 citations

References
More filters
Journal ArticleDOI
22 Feb 1991-Cell
TL;DR: It is demonstrated that free heparin and heparan sulfate can reconstitute a low affinity receptor that is, in turn, required for the high affinity binding of bFGF.

2,448 citations

Journal ArticleDOI
16 Feb 1995-Nature
TL;DR: This work highlights conserved protein domains that act as key regulatory participants in many of these different signalling pathways in multicellular organisms.
Abstract: Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.

2,433 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...One way these recruited target proteins may be localized to the activated receptor is through the interaction between their Src-homology 2 (SH2) domains and specific phosphotyrosine residues on the activated receptor (Pawson 1995)....

    [...]

  • ...Phosphorylated tyrosine residues, in turn, recruit other signaling molecules to the activated receptors and propagate the signal through many possible transduction pathways (Pawson 1995)....

    [...]

Journal ArticleDOI
TL;DR: Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of Thalidomid-treated embryos.
Abstract: Thalidomide is a potent teratogen causing dysmelia (stunted limb growth) in humans. We have demonstrated that orally administered thalidomide is an inhibitor of angiogenesis induced by basic fibroblast growth factor in a rabbit cornea micropocket assay. Experiments including the analysis of thalidomide analogs revealed that the antiangiogenic activity correlated with the teratogenicity but not with the sedative or the mild immunosuppressive properties of thalidomide. Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of thalidomide-treated embryos. These experiments shed light on the mechanism of thalidomide's teratogenicity and hold promise for the potential use of thalidomide as an orally administered drug for the treatment of many diverse diseases dependent on angiogenesis.

2,364 citations

Journal ArticleDOI
TL;DR: It is demonstrated that FGF 1 is the only FGF that can activate all FGF receptor splice variants and the relative activity of all the other members of the FGF family is determined.

2,066 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...†From Ornitz et al. (1996), except where stated; ‡From Koga et al. (1995); §From Miralles et al. (1999); ¶From Xu et al. (1999). topologically identical to interleukin-1β (IL-1β) (Zhu et al. 1991), with which some members also share the feature of secretion by an endoplasmic reticulum…...

    [...]

  • ...Mutation of all four cysteines to serines results in a protein with the same secondary structure and equally mitogenic for 3T3 cells as the wild-type FGF-2 (Foxet al. 1988), suggesting that the formation of disulfide bridges is not important for the secondary structure and mitogenic activity of…...

    [...]

  • ...Ornitz et al. (1996) determined the specificity of different FGFs for different receptor isoforms by overexpressing these isoforms in Baf3 cells, which do not normally express FGFRs, and assaying for [3H]thymidine incorporation in these cells following treatment with different FGFs (see Table 2)....

    [...]

  • ...1, IIIb 100 60 34 16 4 5 6 4 4 1, IIIc 100 104 0 102 59 55 0 1 21 2, IIIb 100 9 45 15 5 5 81 4 7 2, IIIc 100 64 4 94 25 61 2.5 16 89 3, IIIb 100 1 2 1 1 1 1 1 42 3, IIIc 100 107 1 69 12 9 1 41 96 4 100 113 6 108 7 79 2 76 75 Modified from Ornitz et al. (1996)....

    [...]

Journal ArticleDOI

1,994 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...Defining features of the FGF family are a strong affinity for heparin and HLGAGs (Burgess & Maciag 1989), as well as a central core of 140 amino acids that is highly homologous between different family members....

    [...]