scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fibroblast growth factors, their receptors and signaling.

01 Sep 2000-Endocrine-related Cancer (Bioscientifica Ltd)-Vol. 7, Iss: 3, pp 165-197
TL;DR: FGF signaling also appears to play a role in tumor growth and angiogenesis, and autocrine FGF signaling may be particularly important in the progression of steroid hormone-dependent cancers to a hormone-independent state.
Abstract: Fibroblast growth factors (FGFs) are small polypeptide growth factors, all of whom share in common certain structural characteristics, and most of whom bind heparin avidly. Many FGFs contain signal peptides for secretion and are secreted into the extracellular environment, where theycan bind to the heparan-like glycosaminoglycans (HLGAGs) of the extracellular matrix (ECM). From this reservoir, FGFs mayact directlyon target cells, or theycan be released through digestion of the ECM or the activityof a carrier protein, a secreted FGF binding protein. FGFs bind specific receptor tyrosine kinases in the context of HLGAGs and this binding induces receptor dimerization and activation, ultimatelyresulting in the activation of various signal transduction cascades. Some FGFs are potent angiogenic factors and most playimportant roles in embry onic development and wound healing. FGF signaling also appears to playa role in tumor growth and angiogenesis, and autocrine FGF signaling maybe particularlyimportant in the progression of steroid hormone-dependent cancers to a hormone-independent state.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Results suggest that in contrast to ectopic FGFR1 that is a strong promoter of hepatoma, resident FGFR4 that mediates differentiated hepatocyte metabolic functions also serves to suppress hepatoma progression.
Abstract: Fibroblast growth factor (FGF) family signaling mediates cell-to-cell communication in development and organ homeostasis in adults. Of the FGF receptor (FGFR) isotypes, FGFR4 is the sole resident isotype present in mature parenchymal hepatocytes. FGFR1 that is normally associated with activated nonparenchymal cells appears ectopically in hepatoma cells. Ectopic expression and chronic activity of FGFR1 in hepatocytes accelerates diethylnitrosamine (DEN)-initiated hepatocarcinogenesis by driving unrestrained cell proliferation and tumor angiogenesis. Hepatocyte FGFR4 mediates liver's role in systemic cholesterol/bile acid and lipid metabolism and affects proper hepatolobular restoration after damage without effect on cell proliferation. Here we ask whether FGFR4 plays a role in progression of hepatocellular carcinoma (HCC). We report that although spontaneous HCC was not detected in livers of FGFR4-deficient mice, the ablation of FGFR4 accelerated DEN-induced hepatocarcinogenesis. In contrast to FGFR1 that induced a strong mitogenic response and depressed rate of cell death in hepatoma cells, FGFR4 failed to induce a mitogenic response and increased the rate of cell death. FGFR1 but not FGFR4 induced cyclin D1 and repressed p27 expression. Analysis of activation of Erk, JNK, and PI3K-related AKT signaling pathways indicated that in contrast to FGFR1, FGFR4 failed to sustain Erk activation and did not activate AKT. These differences may underlie the opposing effects of FGFR1 and FGFR4. These results suggest that in contrast to ectopic FGFR1 that is a strong promoter of hepatoma, resident FGFR4 that mediates differentiated hepatocyte metabolic functions also serves to suppress hepatoma progression.

48 citations


Cites background from "Fibroblast growth factors, their re..."

  • ...In addition to cell proliferation which has been most widely studied, FGF signaling impacts a wide variety of phenotypic responses related to tissue homeostasis that include cell migration, adhesion, death, differentiation, and specialized functions [4,5]....

    [...]

  • ...to confer cell and tissue specificity of FGF signaling both in respect to activating FGF [2,3] and activation of downstream intracellular pathways [4,5]....

    [...]

Journal ArticleDOI
TL;DR: The aim of this review is to draw special attention to the similarities and differences of current state of the art in vitro and ex vivo models, with special focus on the proteins, cell-cell interactions, and correct matrix composition, which may be a better representative of in vivo conditions in a disease where the extracellular matrix is the central player.

48 citations


Cites background from "Fibroblast growth factors, their re..."

  • ...So far 22 FGFs in humans have been discovered, and the vast majority is acting within short range, but a few homologs have been shown to have endocrine roles in metabolic homeostasis (Kuro-o, 2008; Fukumoto, 2008; Powers et al., 2000; Ornitz and Itoh, 2001)....

    [...]

Journal ArticleDOI
24 Nov 2005-Oncogene
TL;DR: It was showed that p53 and FGF1 pathways may interact in the cell to determine cell fate and deregulation of one of these pathways modifies the balance between cell proliferation and cell death and may lead to tumor progression.
Abstract: We analysed the relationships between p53-induced apoptosis and the acidic fibroblast growth factor 1 (FGF1) survival pathway We found that p53 activation in rat embryonic fibroblasts induced the downregulation of FGF1 expression These data suggest that the fgf1 gene is a repressed target of p53 Unlike extracellular FGF1, which has no effect on p53-dependent pathways, intracellular FGF1 inhibits both p53-dependent apoptosis and cell growth arrest via an intracrine pathway FGF1 increases MDM2 expression at both mRNA and protein levels This increase is associated with an acceleration of p53 degradation, which may partly account for the ability of endogenous FGF1 to counteract p53 pathways In the presence of FGF1, p53 was unable to transactivate bax, but no modification of p21 gene transactivation was observed As Bax is an essential component of the p53-dependent apoptosis pathway, this suggests that intracellular FGF1 inhibits p53 pathways not only by decreasing the stability of p53, but also by modifying some of its transactivation properties In conclusion, we showed that p53 and FGF1 pathways may interact in the cell to determine cell fate Deregulation of one of these pathways modifies the balance between cell proliferation and cell death and may lead to tumor progression

47 citations


Cites background from "Fibroblast growth factors, their re..."

  • ...Exogenous FGF induces FGF-R phosphorylation, which may initiate various intracellular transduction pathways, such as those involving Ras/ MAP kinases, PLC-g and PI3K/Akt pathways (Johnson and Williams, 1993; Powers et al., 2000; Ong et al., 2001; Hashimoto et al., 2002)....

    [...]

Journal ArticleDOI
TL;DR: The early development of the median fin fold is investigated in zebrafish embryos and the function of FGF signaling plays roles in each step, suggesting a common mechanism for the development of median appendages and paired lateral appendages.

47 citations

Journal ArticleDOI
TL;DR: Genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth.
Abstract: The mutated K-ras gene is involved in approximately 30% of human cancers. In order to search for K-ras oncogene-induced modulators in lung tissues of K-ras transgenic mice, we performed microarray and proteomics (LC/ESI-MS/MS) analysis. Genes (RAB27b RAS family, IL-1RA, IL-33, chemokine ligand 6, epiregulin, EGF-like domain and cathepsin) related to cancer development (Wnt signaling pathway) and inflammation (chemokine/cytokine signaling pathway, Toll receptor signaling) were up-regulated while genes (troponin, tropomodulin 2, endothelial lipase, FGFR4, integrin alpha8 and adenylate cyclase 8) related to the tumor suppression such as p53 pathway, TGF-beta signaling pathway and cadherin signaling pathway were down-regulated by K-ras oncogene. Proteomics approach revealed that up-regulated proteins in lung adenomas of K-ras mice were classified as follows: proteins related to the metabolism/catabolism (increased from 7 to 22% by K-ras gene), proteins related to translation/transcription and nucleotide (from 4 to 6%), proteins related to signal transduction (from 3 to 5%), proteins related to phosphorylation (from 1 to 2%). ATP synthase, Ras oncogene family, cytochrome c oxidase, flavoprotein, TEF 1, adipoprotein A-1 BP, glutathione oxidase, fatty acid BP 4, diaphorase 1, MAPK4 and transgelin were up-regulated by K-ras oncogene. However, integrin alpha1, Ras-interacting protein (Rain), endothelin-converting enzyme-1d and splicing factor 3b were down-regulated. These studies suggest that genes related to cancer development and inflammation were up-regulated while genes related to the tumor suppression were down-regulated by K-ras, resulting in the tumor growth. Putative biomarkers such as cell cycle related genes (Cdc37), cancer cell adhesion (Glycam 1, integrin alpha8, integrin alphaX and Clec4n), signal transduction (Tlr2, IL-33, and Ccbp2), migration (Ccr1, Ccl6, and diaphorase 1 (Cyb5r3) and cancer development (epiregulin) can be useful for diagnosis and as prognosis markers and some of the target molecules can be applied for prevention of cancer.

47 citations


Cites background from "Fibroblast growth factors, their re..."

  • ...A specific role for FGFR4 is not well established in cancer, but altered expression has been documented in breast, lung, pancreatic and prostate cancers (47)....

    [...]

References
More filters
Journal ArticleDOI
22 Feb 1991-Cell
TL;DR: It is demonstrated that free heparin and heparan sulfate can reconstitute a low affinity receptor that is, in turn, required for the high affinity binding of bFGF.

2,448 citations

Journal ArticleDOI
16 Feb 1995-Nature
TL;DR: This work highlights conserved protein domains that act as key regulatory participants in many of these different signalling pathways in multicellular organisms.
Abstract: Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.

2,433 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...One way these recruited target proteins may be localized to the activated receptor is through the interaction between their Src-homology 2 (SH2) domains and specific phosphotyrosine residues on the activated receptor (Pawson 1995)....

    [...]

  • ...Phosphorylated tyrosine residues, in turn, recruit other signaling molecules to the activated receptors and propagate the signal through many possible transduction pathways (Pawson 1995)....

    [...]

Journal ArticleDOI
TL;DR: Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of Thalidomid-treated embryos.
Abstract: Thalidomide is a potent teratogen causing dysmelia (stunted limb growth) in humans. We have demonstrated that orally administered thalidomide is an inhibitor of angiogenesis induced by basic fibroblast growth factor in a rabbit cornea micropocket assay. Experiments including the analysis of thalidomide analogs revealed that the antiangiogenic activity correlated with the teratogenicity but not with the sedative or the mild immunosuppressive properties of thalidomide. Electron microscopic examination of the corneal neovascularization of thalidomide-treated rabbits revealed specific ultrastructural changes similar to those seen in the deformed limb bud vasculature of thalidomide-treated embryos. These experiments shed light on the mechanism of thalidomide's teratogenicity and hold promise for the potential use of thalidomide as an orally administered drug for the treatment of many diverse diseases dependent on angiogenesis.

2,364 citations

Journal ArticleDOI
TL;DR: It is demonstrated that FGF 1 is the only FGF that can activate all FGF receptor splice variants and the relative activity of all the other members of the FGF family is determined.

2,066 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...†From Ornitz et al. (1996), except where stated; ‡From Koga et al. (1995); §From Miralles et al. (1999); ¶From Xu et al. (1999). topologically identical to interleukin-1β (IL-1β) (Zhu et al. 1991), with which some members also share the feature of secretion by an endoplasmic reticulum…...

    [...]

  • ...Mutation of all four cysteines to serines results in a protein with the same secondary structure and equally mitogenic for 3T3 cells as the wild-type FGF-2 (Foxet al. 1988), suggesting that the formation of disulfide bridges is not important for the secondary structure and mitogenic activity of…...

    [...]

  • ...Ornitz et al. (1996) determined the specificity of different FGFs for different receptor isoforms by overexpressing these isoforms in Baf3 cells, which do not normally express FGFRs, and assaying for [3H]thymidine incorporation in these cells following treatment with different FGFs (see Table 2)....

    [...]

  • ...1, IIIb 100 60 34 16 4 5 6 4 4 1, IIIc 100 104 0 102 59 55 0 1 21 2, IIIb 100 9 45 15 5 5 81 4 7 2, IIIc 100 64 4 94 25 61 2.5 16 89 3, IIIb 100 1 2 1 1 1 1 1 42 3, IIIc 100 107 1 69 12 9 1 41 96 4 100 113 6 108 7 79 2 76 75 Modified from Ornitz et al. (1996)....

    [...]

Journal ArticleDOI

1,994 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...Defining features of the FGF family are a strong affinity for heparin and HLGAGs (Burgess & Maciag 1989), as well as a central core of 140 amino acids that is highly homologous between different family members....

    [...]