scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Fibroblast growth factors, their receptors and signaling.

01 Sep 2000-Endocrine-related Cancer (Bioscientifica Ltd)-Vol. 7, Iss: 3, pp 165-197
TL;DR: FGF signaling also appears to play a role in tumor growth and angiogenesis, and autocrine FGF signaling may be particularly important in the progression of steroid hormone-dependent cancers to a hormone-independent state.
Abstract: Fibroblast growth factors (FGFs) are small polypeptide growth factors, all of whom share in common certain structural characteristics, and most of whom bind heparin avidly. Many FGFs contain signal peptides for secretion and are secreted into the extracellular environment, where theycan bind to the heparan-like glycosaminoglycans (HLGAGs) of the extracellular matrix (ECM). From this reservoir, FGFs mayact directlyon target cells, or theycan be released through digestion of the ECM or the activityof a carrier protein, a secreted FGF binding protein. FGFs bind specific receptor tyrosine kinases in the context of HLGAGs and this binding induces receptor dimerization and activation, ultimatelyresulting in the activation of various signal transduction cascades. Some FGFs are potent angiogenic factors and most playimportant roles in embry onic development and wound healing. FGF signaling also appears to playa role in tumor growth and angiogenesis, and autocrine FGF signaling maybe particularlyimportant in the progression of steroid hormone-dependent cancers to a hormone-independent state.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A review of the specific roles of these growth factors and cytokines during wound healing can be found in this article, where patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF.
Abstract: Wound healing is an evolutionarily conserved, complex, multicellular process that, in skin, aims at barrier restoration. This process involves the coordinated efforts of several cell types including keratinocytes, fibroblasts, endothelial cells, macrophages, and platelets. The migration, infiltration, proliferation, and differentiation of these cells will culminate in an inflammatory response, the formation of new tissue and ultimately wound closure. This complex process is executed and regulated by an equally complex signaling network involving numerous growth factors, cytokines and chemokines. Of particular importance is the epidermal growth factor (EGF) family, transforming growth factor beta (TGF-beta) family, fibroblast growth factor (FGF) family, vascular endothelial growth factor (VEGF), granulocyte macrophage colony stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), interleukin (IL) family, and tumor necrosis factor-alpha family. Currently, patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF. Only PDGF-BB has successfully completed randomized clinical trials in the Unites States. With gene therapy now in clinical trial and the discovery of biodegradable polymers, fibrin mesh, and human collagen serving as potential delivery systems other growth factors may soon be available to patients. This review will focus on the specific roles of these growth factors and cytokines during the wound healing process.

2,617 citations

Journal ArticleDOI
TL;DR: A subset of the FGF family, expressed in adult tissue, is important for neuronal signal transduction in the central and peripheral nervous systems.
Abstract: Fibroblast growth factors (FGFs) make up a large family of polypeptide growth factors that are found in organisms ranging from nematodes to humans. In vertebrates, the 22 members of the FGF family range in molecular mass from 17 to 34 kDa and share 13-71% amino acid identity. Between vertebrate species, FGFs are highly conserved in both gene structure and amino-acid sequence. FGFs have a high affinity for heparan sulfate proteoglycans and require heparan sulfate to activate one of four cell-surface FGF receptors. During embryonic development, FGFs have diverse roles in regulating cell proliferation, migration and differentiation. In the adult organism, FGFs are homeostatic factors and function in tissue repair and response to injury. When inappropriately expressed, some FGFs can contribute to the pathogenesis of cancer. A subset of the FGF family, expressed in adult tissue, is important for neuronal signal transduction in the central and peripheral nervous systems.

2,228 citations

Journal ArticleDOI
TL;DR: It is concluded that FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.
Abstract: Diabetes mellitus is a major health concern, affecting more than 5% of the population. Here we describe a potential novel therapeutic agent for this disease, FGF-21, which was discovered to be a potent regulator of glucose uptake in mouse 3T3-L1 and primary human adipocytes. FGF-21-transgenic mice were viable and resistant to diet-induced obesity. Therapeutic administration of FGF-21 reduced plasma glucose and triglycerides to near normal levels in both ob/ob and db/db mice. These effects persisted for at least 24 hours following the cessation of FGF-21 administration. Importantly, FGF-21 did not induce mitogenicity, hypoglycemia, or weight gain at any dose tested in diabetic or healthy animals or when overexpressed in transgenic mice. Thus, we conclude that FGF-21, which we have identified as a novel metabolic factor, exhibits the therapeutic characteristics necessary for an effective treatment of diabetes.

1,921 citations

Journal ArticleDOI
TL;DR: Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning.
Abstract: The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs) Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer © 2015 Wiley Periodicals, Inc

1,445 citations

Journal ArticleDOI
TL;DR: This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.

1,052 citations

References
More filters
Journal ArticleDOI
TL;DR: Analysis of mice lacking IRS‐1 confirms an important physiological role for this protein in glucose metabolism and general cell growth in the intact animal, and regulates the signalling pathways integrated by the IRS proteins may contribute to the pathophysiology of non‐insulin‐dependent diabetes mellitus or other diseases.
Abstract: The discovery of the first intracellular substrate for insulin, IRS-1, redirected the field of diabetes research and has led to many important advances in our understanding of insulin action. Detailed analysis of IRS-1 demonstrates structure/function relationships for this modular docking molecule, including mechanisms of substrate recognition and signal propagation. Recent work has also identified other structurally similar molecules, including IRS-2, the Drosophila protein, DOS, and the Grb2-binding protein, Gab1, suggesting that this intracellular signalling strategy is conserved evolutionarily and is utilized by an expanding number of receptor systems. In fact, IRS-1 itself has been shown to be important in other growth factor and cytokine signalling systems, including growth hormone and several interleukins. Analysis of mice lacking IRS-1 confirms an important physiological role for this protein in glucose metabolism and general cell growth in the intact animal. Disregulation of the signalling pathways integrated by the IRS proteins may contribute to the pathophysiology of non-insulin-dependent diabetes mellitus or other diseases.

272 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...Regulation of this second pathway has yet to be determined, as it seems to function independently of receptor phosphorylation, although this pathway appears at least superficially analogous to that of the insulin receptor and the insulin receptor substrate (IRS)-1 (Yenush & White 1997)....

    [...]

Journal ArticleDOI
TL;DR: The results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic F GF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem withbasic FGF in glioma tumorigenesis.
Abstract: The growth autonomy of human tumor cells is considered due to the endogenous production of growth factors. Transcriptional expression of candidates for autocrine stimulatory factors such as basic fibroblast growth factor (FGF), acidic FGF, and transforming growth factor type beta were determined in human brain tumors. Basic FGF was expressed abundantly in 17 of 18 gliomas, 20 of 22 meninglomas, and 0 of 5 metastatic brain tumors. The level of mRNA expression of acidic FGF in gliomas was significant. In contrast, transforming growth factor type beta 1 was expressed in all the samples investigated. The mRNA for basic FGF and its peptide were localized in tumor cells in vivo by in situ hybridization and immunohistochemistry, showing that basic FGF is actually produced in tumor cells. Our results suggest that tumor-derived basic FGF is involved in the progression of gliomas and meningiomas in vivo, whereas acidic FGF is expressed in a tumor origin-specific manner, suggesting that acidic FGF works in tandem with basic FGF in glioma tumorigenesis.

264 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...fgf-2 mRNA has been shown to be expressed in over 94% of human gliomas (Takahashi et al. 1990); however, the FGF-2 protein has not been detected in normal brain by immunohistochemistry (Takahashi et al....

    [...]

Journal ArticleDOI
TL;DR: The crystal structure, determined by multiwavelength anomalous diffraction analysis of the selenomethionyl protein, is a dimeric assemblage of 1:1 ligand:receptor complexes that provides a structural mechanism for FGF signal transduction.
Abstract: Fibroblast growth factors (FGFs) effect cellular responses by binding to FGF receptors (FGFRs). FGF bound to extracellular domains on the FGFR in the presence of heparin activates the cytoplasmic receptor tyrosine kinase through autophosphorylation. We have crystallized a complex between human FGF1 and a two-domain extracellular fragment of human FGFR2. The crystal structure, determined by multiwavelength anomalous diffraction analysis of the selenomethionyl protein, is a dimeric assemblage of 1:1 ligand:receptor complexes. FGF is bound at the junction between the two domains of one FGFR, and two such units are associated through receptor:receptor and secondary ligand:receptor interfaces. Sulfate ion positions appear to mark the course of heparin binding between FGF molecules through a basic region on receptor D2 domains. This dimeric assemblage provides a structural mechanism for FGF signal transduction.

258 citations

Journal ArticleDOI
12 May 1989-Science
TL;DR: Overabundance of matrix FGF in mdx muscles may be related to an increase in both satellite cell and regenerative activity in the dystrophic muscle and may help explain the benign phenotype of mdx animals compared with the genetically identical human Duchenne muscular dystrophy.
Abstract: Polyclonal antibody F547 reacts with a bovine basic fibroblast growth factor (bFGF) and a human recombinant bFGF, but not with bovine acidic fibroblast growth factor. This antibody localized bFGF in the extracellular matrix of mouse skeletal muscle, primarily in the fiber endomysium, which includes the heparin-containing basal lamina. In mdx mouse muscle, which displays persistent regeneration, FGF levels in the extracellular matrix are higher than those in controls. Overabundance of matrix FGF in mdx muscles may be related to an increase in both satellite cell and regenerative activity in the dystrophic muscle and may help explain the benign phenotype of mdx animals compared with the genetically identical human Duchenne muscular dystrophy.

258 citations


Additional excerpts

  • ...1, IIIb 100 60 34 16 4 5 6 4 4 1, IIIc 100 104 0 102 59 55 0 1 21 2, IIIb 100 9 45 15 5 5 81 4 7 2, IIIc 100 64 4 94 25 61 2.5 16 89 3, IIIb 100 1 2 1 1 1 1 1 42 3, IIIc 100 107 1 69 12 9 1 41 96 4 100 113 6 108 7 79 2 76 75 Modified from Ornitz et al. (1996)....

    [...]

Journal ArticleDOI
TL;DR: Acidic brain fibroblast growth factor has been purified a minimum of 35,000-fold to apparent homogeneity by a combination of differential salt precipitation, ion exchange chromatography, gel filtration, isoelectric focusing, and hydrophobic chromatography on a C4 reversed-phase HPLC column.
Abstract: Acidic brain fibroblast growth factor has been purified a minimum of 35,000-fold to apparent homogeneity by a combination of differential salt precipitation, ion exchange chromatography, gel filtration, isoelectric focusing, and hydrophobic chromatography on a C4 reversed-phase HPLC column. Two microheterogeneous forms of the molecule are obtained with apparent molecular masses of 16,600 and 16,800 daltons. The mitogen is highly active with half-maximal stimulation of BALB/c 3T3 fibroblasts at about 40 pg/ml in an assay using incorporation of [methyl-3H]thymidine into DNA.

253 citations


"Fibroblast growth factors, their re..." refers background in this paper

  • ...The ability of FGFRs in a liganded dimer pair to transphosphorylate each other extends to FGFR heterodimers as well as homodimers (Bellotet al. 1991), allowing for additional complexity in FGF signaling....

    [...]