scispace - formally typeset
Open AccessBook

Field and wave electromagnetics

Reads0
Chats0
TLDR
In this article, the authors consider boundary value problems in Cylindrical Coordinates and present a solution to the problem of boundary addition and subtraction in Cartesian Coordinates.
Abstract
1. The Electromagnetic Model. Introduction. The Electromagnetic Model. Si Units and Universal Constants. Review Questions. 2. Vector Analysis. Introduction. Vector Addition and Subtraction. Products of Vectors. Orthogonal Coordinate Systems. Integrals Containing Vector Functions. Gradient of a Scalar Field. Divergence of a Vector Field. Divergence Theorem. Curl of a Vector Field. Stoke's Theorem. Two Null Identities. Helmholtz's Theorem. Review Questions. Problems. 3. Static Electric Fields. Introduction. Fundamental Postulates of Electrostatics in Free Space. Coulomb's Law. Gauss's Law and Applications. Electric Potential. Conductors in Static Electric Field. Dielectrics in Static Electric Field. Electric Flux Density and Dielectric Constant. Boundary Conditions for Electrostatic Fields. Capacitances and Capacitors. Electrostatic Energy and Forces. Solution of Electrostatic Boundary-Value Problems. Review Questions. Problems. 4. Solution of Electrostatic Problems. Introduction. Poisson's and Laplaces' Equations. Uniqueness of Electrostatic Functions. Method of Images. Boundary-Value Problems in Cartesian Coordinates. Boundary-Value Problems in Cylindrical Coordinates. Boundary-Value Problems in Spherical Coordinates. Review Questions. Problems. 5. Steady Electric Currents. Introduction. Current Density and Ohm's Law. Electromotive Force and Kirchoff's Voltage Law. Equation of Continuity and Kirchoff's Current Law. Power Dissipation and Joule's Law. Boundary Conditions for Current Density. Resistance Calculations. Review Questions. Problems. 6. Static Magnetic Fields. Introduction. Fundamental Postulates of Magnetostatics in Free Space. Vector Magnetic Potential. The Biot-Savart Law and Applications. The Magnetic Dipole. Magnetization and Equivalent Current Densities. Magnetic Field Intensity and Relative Permeability. Magnetic Circuits. Behavior of Magnetic Materials. Boundary Conditions for Magnetostatic Fields. Inductances and Inductors. Magnetic Energy. Magnetic Forces and Torques. Review Questions. Problems. 7. Time-Varying Fields and Maxwell's Equations. Introduction. Faraday's Law of Electromagnetic Induction. Maxwell's Equations. Potential Functions. Electromagnetic Boundary Conditions. Wave Equations and their Solutions. Time-Harmonic Fields. Review Questions. Problems. 8. Plane Electromagnetic Waves. Introduction. Plane Waves in Lossless Media. Plane Waves in Lossy Media. Group Velocity. Flow of Electromagentic Power and the Poynting Vector. Normal Incidence of Plane Waves at a Plane Conducting Boundary. Oblique Incidence of Plane Waves at a Plane Conducting Boundary. Normal Incidence of Plane Waves at a Plane Dielectric Boundary. Normal Incidence of Plane Waves at Multiple Dielectric Interfaces. Oblique Incidence of Plane Waves at a Plane Dielectric Boundary. Review Questions. Problems. 9. Theory and Application of Transmission Lines Introduction. Transverse Electromagnetic Wave Along a Parallel-Plate. Transmission Line General Transmission-Line Equations. Wave Characteristics on Finite Transmission Lines. Transients on Transmission Lines. The Smith Chart. Transmission-Line Impedance Matching. Review Questions. Problems. 10. Waveguides and Cavity Resonators. Introduction. General Wave Behaviors Along Uniform Guiding Structures. Parallel-Plate Waveguide. Rectangular Waveguides. Circular Waveguides. Dielectric Waveguides. Cavity Resonators. Review Questions. Problems. 11. Antennas and Radiating Systems. Introduction. Radiation Fields of Elemental Dipoles. Antenna Patterns and Antenna Parameters. Thin Linear Antennas. Antenna Arrays. Receiving Antennas. Transmit-Receive Systems. Some Other Antenna Types. Review Questions. Problems. Appendix A: Symbols and Units. Appendix B: Some Useful Material Constants. Bibliography. Answers to Selected Problems. Index. Back Endpapers.

read more

Citations
More filters
Journal ArticleDOI

Nanoantennas for visible and infrared radiation.

TL;DR: The role of plasmonic resonances on the performance of nanoantennas and the influence of geometrical parameters imposed by nanofabrication are discussed.
Journal ArticleDOI

Resonant cavity enhanced photonic devices

TL;DR: In this paper, the authors review the family of optoelectronic devices whose performance is enhanced by placing the active device structure inside a Fabry-Perot resonantmicrocavity.
Book

Electromagnetic Band Gap Structures in Antenna Engineering

TL;DR: In this paper, the FDTD method for periodic structure analysis is used for periodic structures analysis of EBG surfaces and low profile wire antennas are used for EBG surface wave antennas.
Book

Ultra-wideband signals and systems in communication engineering

TL;DR: This chapter discusses the development of UWB signals and systems, and proposes proposals for UWB channel models and methods, as well as some of the challenges faced by the system and its users.