scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers

26 Nov 2012-Applied Physics Letters (American Institute of Physics)-Vol. 101, Iss: 22, pp 223104
TL;DR: In this paper, the authors report the fabrication of back-gated field effect transistors (FETs) using ultra-thin, mechanically exfoliated MoSe2 flakes.
Abstract: We report the fabrication of back-gated field-effect transistors (FETs) using ultra-thin, mechanically exfoliated MoSe2 flakes. The MoSe2 FETs are n-type and possess a high gate modulation, with On/Off ratios larger than 106. The devices show asymmetric characteristics upon swapping the source and drain, a finding explained by the presence of Schottky barriers at the metal contact/MoSe2 interface. Using four-point, back-gated devices, we measure the intrinsic conductivity and mobility of MoSe2 as a function of gate bias, and temperature. Samples with a room temperature mobility of ∼ 50 cm2/V·s show a strong temperature dependence, suggesting phonons are a dominant scattering mechanism.
Citations
More filters
Journal ArticleDOI
31 Jan 2014-ACS Nano
TL;DR: By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.
Abstract: With advances in exfoliation and synthetic techniques, atomically thin films of semiconducting transition metal dichalcogenides have recently been isolated and characterized. Their two-dimensional structure, coupled with a direct band gap in the visible portion of the electromagnetic spectrum, suggests suitability for digital electronics and optoelectronics. Toward that end, several classes of high-performance devices have been reported along with significant progress in understanding their physical properties. Here, we present a review of the architecture, operating principles, and physics of electronic and optoelectronic devices based on ultrathin transition metal dichalcogenide semiconductors. By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.

2,219 citations

Journal ArticleDOI
24 Nov 2015-ACS Nano
TL;DR: Insight is provided into the theoretical modeling and understanding of the van der Waals forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies.
Abstract: The isolation of graphene in 2004 from graphite was a defining moment for the “birth” of a field: two-dimensional (2D) materials In recent years, there has been a rapidly increasing number of papers focusing on non-graphene layered materials, including transition-metal dichalcogenides (TMDs), because of the new properties and applications that emerge upon 2D confinement Here, we review significant recent advances and important new developments in 2D materials “beyond graphene” We provide insight into the theoretical modeling and understanding of the van der Waals (vdW) forces that hold together the 2D layers in bulk solids, as well as their excitonic properties and growth morphologies Additionally, we highlight recent breakthroughs in TMD synthesis and characterization and discuss the newest families of 2D materials, including monoelement 2D materials (ie, silicene, phosphorene, etc) and transition metal carbide- and carbon nitride-based MXenes We then discuss the doping and functionalization of 2

2,036 citations

Journal ArticleDOI
TL;DR: With the discovery of hexagonal boron nitride as an ideal dielectric, the materials are now in place to advance integrated flexible nanoelectronics, which uniquely take advantage of the unmatched portfolio of properties of two-dimensional crystals, beyond the capability of conventional thin films for ubiquitous flexible systems.
Abstract: The unique electrical, mechanical and physical properties of two-dimensional materials make them attractive candidates in flexible nanoelectronic systems. Here Akinwande et al. review the literature on two-dimensional materials in flexible nanoelectronics, and highlight barriers to their full implementation.

1,575 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on electrical transport measurements on MoS2 FETs in different dielectric configurations and show clear evidence of the strong suppression of charge impurity scattering in dual-gate devices with a top-gate Dielectric together with phonon scattering that shows a weaker than expected temperature dependence.
Abstract: Two-dimensional (2D) materials are a new class of materials with interesting physical properties and ranging from nanoelectronics to sensing and photonics. In addition to graphene, the most studied 2D material, monolayers of other layered materials such as semiconducting dichalcogenides MoS2 or WSe2 are gaining in importance as promising insulators and channel materials for field-effect transistors (FETs). The presence of a direct band gap in monolayer MoS2 due to quantum mechanical confinement, allows room-temperature field-effect transistors with an on/off ratio exceeding 108. The presence of high-k dielectrics in these devices enhanced their mobility, but the mechanisms are not well understood. Here, we report on electrical transport measurements on MoS2 FETs in different dielectric configurations. Mobility dependence on temperature shows clear evidence of the strong suppression of charge impurity scattering in dual-gate devices with a top-gate dielectric together with phonon scattering that shows a weaker than expected temperature dependence. High levels of doping achieved in dual-gate devices also allow the observation of a metal-insulator transition in monolayer MoS2. Our work opens up the way to further improvements in 2D semiconductor performance and introduces MoS2 as an interesting system for studying correlation effects in mesoscopic systems.

1,308 citations

Journal ArticleDOI
TL;DR: The first direct observation of the transition from indirect to direct bandgap in monolayer samples is reported by using angle-resolved photoemission spectroscopy on high-quality thin films of MoSe2 with variable thickness, grown by molecular beam epitaxy.
Abstract: The transition from an indirect to direct bandgap in transition metal dichalcogenides has been observed in samples with thicknesses ranging from 8 to 1 monolayers by angle-resolved photoemission spectroscopy.

1,164 citations

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations

Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations

Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations

Journal ArticleDOI
TL;DR: The transition metal dichalcogenides are about 60 in number as discussed by the authors, and two-thirds of these assume layer structures and can be cleaved down to less than 1000 A and are then transparent in the region of direct band-to-band transitions.
Abstract: The transition metal dichalcogenides are about 60 in number. Two-thirds of these assume layer structures. Crystals of such materials can be cleaved down to less than 1000 A and are then transparent in the region of direct band-to-band transitions. The transmission spectra of the family have been correlated group by group with the wide range of electrical and structural data available to yield useful working band models that are in accord with a molecular orbital approach. Several special topics have arisen; these include exciton screening, d-band formation, and the metal/insulator transition; also magnetism and superconductivity in such compounds. High pressure work seems to offer the possibility for testing the recent theory of excitonic insulators.

3,313 citations

Journal ArticleDOI
TL;DR: It is shown that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity, and its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate.
Abstract: The linear dispersion relation in graphene gives rise to a surprising prediction: the resistivity due to isotropic scatterers, such as white-noise disorder or phonons, is independent of carrier density, n. Here we show that electron-acoustic phonon scattering is indeed independent of n, and contributes only 30 Omega to graphene's room-temperature resistivity. At a technologically relevant carrier density of 1 x1012 cm-2, we infer a mean free path for electron-acoustic phonon scattering of >2 microm and an intrinsic mobility limit of 2 x 105 cm2 V-1 s-1. If realized, this mobility would exceed that of InSb, the inorganic semiconductor with the highest known mobility ( approximately 7.7 x 104 cm2 V-1 s-1; ref. 9) and that of semiconducting carbon nanotubes ( approximately 1 x 105 cm2 V-1 s-1; ref. 10). A strongly temperature-dependent resistivity contribution is observed above approximately 200 K (ref. 8); its magnitude, temperature dependence and carrier-density dependence are consistent with extrinsic scattering by surface phonons at the SiO2 substrate and limit the room-temperature mobility to approximately 4 x 104 cm2 V-1 s-1, indicating the importance of substrate choice for graphene devices.

2,947 citations